ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rdgtfr GIF version

Theorem rdgtfr 6023
Description: The recursion rule for the recursive definition generator is defined everywhere. (Contributed by Jim Kingdon, 14-May-2020.)
Assertion
Ref Expression
rdgtfr ((∀𝑧(𝐹𝑧) ∈ V ∧ 𝐴𝑉) → (Fun (𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥)))) ∧ ((𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))))‘𝑓) ∈ V))
Distinct variable groups:   𝐴,𝑔   𝑥,𝑔,𝑧,𝐹
Allowed substitution hints:   𝐴(𝑥,𝑧,𝑓)   𝐹(𝑓)   𝑉(𝑥,𝑧,𝑓,𝑔)

Proof of Theorem rdgtfr
StepHypRef Expression
1 elex 2611 . 2 (𝐴𝑉𝐴 ∈ V)
2 funmpt 4968 . . . 4 Fun (𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))))
3 vex 2605 . . . . 5 𝑓 ∈ V
4 vex 2605 . . . . . . . . . . 11 𝑔 ∈ V
54dmex 4626 . . . . . . . . . 10 dom 𝑔 ∈ V
6 vex 2605 . . . . . . . . . . . . 13 𝑥 ∈ V
74, 6fvex 5226 . . . . . . . . . . . 12 (𝑔𝑥) ∈ V
8 fveq2 5209 . . . . . . . . . . . . 13 (𝑧 = (𝑔𝑥) → (𝐹𝑧) = (𝐹‘(𝑔𝑥)))
98eleq1d 2148 . . . . . . . . . . . 12 (𝑧 = (𝑔𝑥) → ((𝐹𝑧) ∈ V ↔ (𝐹‘(𝑔𝑥)) ∈ V))
107, 9spcv 2692 . . . . . . . . . . 11 (∀𝑧(𝐹𝑧) ∈ V → (𝐹‘(𝑔𝑥)) ∈ V)
1110ralrimivw 2436 . . . . . . . . . 10 (∀𝑧(𝐹𝑧) ∈ V → ∀𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥)) ∈ V)
12 iunexg 5777 . . . . . . . . . 10 ((dom 𝑔 ∈ V ∧ ∀𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥)) ∈ V) → 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥)) ∈ V)
135, 11, 12sylancr 405 . . . . . . . . 9 (∀𝑧(𝐹𝑧) ∈ V → 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥)) ∈ V)
14 unexg 4204 . . . . . . . . 9 ((𝐴 ∈ V ∧ 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥)) ∈ V) → (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))) ∈ V)
1513, 14sylan2 280 . . . . . . . 8 ((𝐴 ∈ V ∧ ∀𝑧(𝐹𝑧) ∈ V) → (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))) ∈ V)
1615ancoms 264 . . . . . . 7 ((∀𝑧(𝐹𝑧) ∈ V ∧ 𝐴 ∈ V) → (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))) ∈ V)
1716ralrimivw 2436 . . . . . 6 ((∀𝑧(𝐹𝑧) ∈ V ∧ 𝐴 ∈ V) → ∀𝑔 ∈ V (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))) ∈ V)
18 dmmptg 4848 . . . . . 6 (∀𝑔 ∈ V (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))) ∈ V → dom (𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥)))) = V)
1917, 18syl 14 . . . . 5 ((∀𝑧(𝐹𝑧) ∈ V ∧ 𝐴 ∈ V) → dom (𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥)))) = V)
203, 19syl5eleqr 2169 . . . 4 ((∀𝑧(𝐹𝑧) ∈ V ∧ 𝐴 ∈ V) → 𝑓 ∈ dom (𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥)))))
21 funfvex 5223 . . . 4 ((Fun (𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥)))) ∧ 𝑓 ∈ dom (𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))))) → ((𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))))‘𝑓) ∈ V)
222, 20, 21sylancr 405 . . 3 ((∀𝑧(𝐹𝑧) ∈ V ∧ 𝐴 ∈ V) → ((𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))))‘𝑓) ∈ V)
2322, 2jctil 305 . 2 ((∀𝑧(𝐹𝑧) ∈ V ∧ 𝐴 ∈ V) → (Fun (𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥)))) ∧ ((𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))))‘𝑓) ∈ V))
241, 23sylan2 280 1 ((∀𝑧(𝐹𝑧) ∈ V ∧ 𝐴𝑉) → (Fun (𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥)))) ∧ ((𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))))‘𝑓) ∈ V))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wal 1283   = wceq 1285  wcel 1434  wral 2349  Vcvv 2602  cun 2972   ciun 3686  cmpt 3847  dom cdm 4371  Fun wfun 4926  cfv 4932
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064  ax-coll 3901  ax-sep 3904  ax-pow 3956  ax-pr 3972  ax-un 4196
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-nf 1391  df-sb 1687  df-eu 1945  df-mo 1946  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-ral 2354  df-rex 2355  df-reu 2356  df-rab 2358  df-v 2604  df-sbc 2817  df-csb 2910  df-un 2978  df-in 2980  df-ss 2987  df-pw 3392  df-sn 3412  df-pr 3413  df-op 3415  df-uni 3610  df-iun 3688  df-br 3794  df-opab 3848  df-mpt 3849  df-id 4056  df-xp 4377  df-rel 4378  df-cnv 4379  df-co 4380  df-dm 4381  df-rn 4382  df-res 4383  df-ima 4384  df-iota 4897  df-fun 4934  df-fn 4935  df-f 4936  df-f1 4937  df-fo 4938  df-f1o 4939  df-fv 4940
This theorem is referenced by:  rdgifnon2  6029
  Copyright terms: Public domain W3C validator