ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  recan GIF version

Theorem recan 9928
Description: Cancellation law involving the real part of a complex number. (Contributed by NM, 12-May-2005.)
Assertion
Ref Expression
recan ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (∀𝑥 ∈ ℂ (ℜ‘(𝑥 · 𝐴)) = (ℜ‘(𝑥 · 𝐵)) ↔ 𝐴 = 𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem recan
StepHypRef Expression
1 ax-1cn 7034 . . . . 5 1 ∈ ℂ
2 oveq1 5546 . . . . . . . 8 (𝑥 = 1 → (𝑥 · 𝐴) = (1 · 𝐴))
32fveq2d 5209 . . . . . . 7 (𝑥 = 1 → (ℜ‘(𝑥 · 𝐴)) = (ℜ‘(1 · 𝐴)))
4 oveq1 5546 . . . . . . . 8 (𝑥 = 1 → (𝑥 · 𝐵) = (1 · 𝐵))
54fveq2d 5209 . . . . . . 7 (𝑥 = 1 → (ℜ‘(𝑥 · 𝐵)) = (ℜ‘(1 · 𝐵)))
63, 5eqeq12d 2070 . . . . . 6 (𝑥 = 1 → ((ℜ‘(𝑥 · 𝐴)) = (ℜ‘(𝑥 · 𝐵)) ↔ (ℜ‘(1 · 𝐴)) = (ℜ‘(1 · 𝐵))))
76rspcv 2669 . . . . 5 (1 ∈ ℂ → (∀𝑥 ∈ ℂ (ℜ‘(𝑥 · 𝐴)) = (ℜ‘(𝑥 · 𝐵)) → (ℜ‘(1 · 𝐴)) = (ℜ‘(1 · 𝐵))))
81, 7ax-mp 7 . . . 4 (∀𝑥 ∈ ℂ (ℜ‘(𝑥 · 𝐴)) = (ℜ‘(𝑥 · 𝐵)) → (ℜ‘(1 · 𝐴)) = (ℜ‘(1 · 𝐵)))
9 negicn 7274 . . . . . 6 -i ∈ ℂ
10 oveq1 5546 . . . . . . . . 9 (𝑥 = -i → (𝑥 · 𝐴) = (-i · 𝐴))
1110fveq2d 5209 . . . . . . . 8 (𝑥 = -i → (ℜ‘(𝑥 · 𝐴)) = (ℜ‘(-i · 𝐴)))
12 oveq1 5546 . . . . . . . . 9 (𝑥 = -i → (𝑥 · 𝐵) = (-i · 𝐵))
1312fveq2d 5209 . . . . . . . 8 (𝑥 = -i → (ℜ‘(𝑥 · 𝐵)) = (ℜ‘(-i · 𝐵)))
1411, 13eqeq12d 2070 . . . . . . 7 (𝑥 = -i → ((ℜ‘(𝑥 · 𝐴)) = (ℜ‘(𝑥 · 𝐵)) ↔ (ℜ‘(-i · 𝐴)) = (ℜ‘(-i · 𝐵))))
1514rspcv 2669 . . . . . 6 (-i ∈ ℂ → (∀𝑥 ∈ ℂ (ℜ‘(𝑥 · 𝐴)) = (ℜ‘(𝑥 · 𝐵)) → (ℜ‘(-i · 𝐴)) = (ℜ‘(-i · 𝐵))))
169, 15ax-mp 7 . . . . 5 (∀𝑥 ∈ ℂ (ℜ‘(𝑥 · 𝐴)) = (ℜ‘(𝑥 · 𝐵)) → (ℜ‘(-i · 𝐴)) = (ℜ‘(-i · 𝐵)))
1716oveq2d 5555 . . . 4 (∀𝑥 ∈ ℂ (ℜ‘(𝑥 · 𝐴)) = (ℜ‘(𝑥 · 𝐵)) → (i · (ℜ‘(-i · 𝐴))) = (i · (ℜ‘(-i · 𝐵))))
188, 17oveq12d 5557 . . 3 (∀𝑥 ∈ ℂ (ℜ‘(𝑥 · 𝐴)) = (ℜ‘(𝑥 · 𝐵)) → ((ℜ‘(1 · 𝐴)) + (i · (ℜ‘(-i · 𝐴)))) = ((ℜ‘(1 · 𝐵)) + (i · (ℜ‘(-i · 𝐵)))))
19 replim 9680 . . . . 5 (𝐴 ∈ ℂ → 𝐴 = ((ℜ‘𝐴) + (i · (ℑ‘𝐴))))
20 mulid2 7082 . . . . . . . 8 (𝐴 ∈ ℂ → (1 · 𝐴) = 𝐴)
2120eqcomd 2061 . . . . . . 7 (𝐴 ∈ ℂ → 𝐴 = (1 · 𝐴))
2221fveq2d 5209 . . . . . 6 (𝐴 ∈ ℂ → (ℜ‘𝐴) = (ℜ‘(1 · 𝐴)))
23 imre 9672 . . . . . . 7 (𝐴 ∈ ℂ → (ℑ‘𝐴) = (ℜ‘(-i · 𝐴)))
2423oveq2d 5555 . . . . . 6 (𝐴 ∈ ℂ → (i · (ℑ‘𝐴)) = (i · (ℜ‘(-i · 𝐴))))
2522, 24oveq12d 5557 . . . . 5 (𝐴 ∈ ℂ → ((ℜ‘𝐴) + (i · (ℑ‘𝐴))) = ((ℜ‘(1 · 𝐴)) + (i · (ℜ‘(-i · 𝐴)))))
2619, 25eqtrd 2088 . . . 4 (𝐴 ∈ ℂ → 𝐴 = ((ℜ‘(1 · 𝐴)) + (i · (ℜ‘(-i · 𝐴)))))
27 replim 9680 . . . . 5 (𝐵 ∈ ℂ → 𝐵 = ((ℜ‘𝐵) + (i · (ℑ‘𝐵))))
28 mulid2 7082 . . . . . . . 8 (𝐵 ∈ ℂ → (1 · 𝐵) = 𝐵)
2928eqcomd 2061 . . . . . . 7 (𝐵 ∈ ℂ → 𝐵 = (1 · 𝐵))
3029fveq2d 5209 . . . . . 6 (𝐵 ∈ ℂ → (ℜ‘𝐵) = (ℜ‘(1 · 𝐵)))
31 imre 9672 . . . . . . 7 (𝐵 ∈ ℂ → (ℑ‘𝐵) = (ℜ‘(-i · 𝐵)))
3231oveq2d 5555 . . . . . 6 (𝐵 ∈ ℂ → (i · (ℑ‘𝐵)) = (i · (ℜ‘(-i · 𝐵))))
3330, 32oveq12d 5557 . . . . 5 (𝐵 ∈ ℂ → ((ℜ‘𝐵) + (i · (ℑ‘𝐵))) = ((ℜ‘(1 · 𝐵)) + (i · (ℜ‘(-i · 𝐵)))))
3427, 33eqtrd 2088 . . . 4 (𝐵 ∈ ℂ → 𝐵 = ((ℜ‘(1 · 𝐵)) + (i · (ℜ‘(-i · 𝐵)))))
3526, 34eqeqan12d 2071 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 = 𝐵 ↔ ((ℜ‘(1 · 𝐴)) + (i · (ℜ‘(-i · 𝐴)))) = ((ℜ‘(1 · 𝐵)) + (i · (ℜ‘(-i · 𝐵))))))
3618, 35syl5ibr 149 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (∀𝑥 ∈ ℂ (ℜ‘(𝑥 · 𝐴)) = (ℜ‘(𝑥 · 𝐵)) → 𝐴 = 𝐵))
37 oveq2 5547 . . . 4 (𝐴 = 𝐵 → (𝑥 · 𝐴) = (𝑥 · 𝐵))
3837fveq2d 5209 . . 3 (𝐴 = 𝐵 → (ℜ‘(𝑥 · 𝐴)) = (ℜ‘(𝑥 · 𝐵)))
3938ralrimivw 2410 . 2 (𝐴 = 𝐵 → ∀𝑥 ∈ ℂ (ℜ‘(𝑥 · 𝐴)) = (ℜ‘(𝑥 · 𝐵)))
4036, 39impbid1 134 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (∀𝑥 ∈ ℂ (ℜ‘(𝑥 · 𝐴)) = (ℜ‘(𝑥 · 𝐵)) ↔ 𝐴 = 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 101  wb 102   = wceq 1259  wcel 1409  wral 2323  cfv 4929  (class class class)co 5539  cc 6944  1c1 6947  ici 6948   + caddc 6949   · cmul 6951  -cneg 7245  cre 9661  cim 9662
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-in1 554  ax-in2 555  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-13 1420  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-coll 3899  ax-sep 3902  ax-nul 3910  ax-pow 3954  ax-pr 3971  ax-un 4197  ax-setind 4289  ax-iinf 4338  ax-cnex 7032  ax-resscn 7033  ax-1cn 7034  ax-1re 7035  ax-icn 7036  ax-addcl 7037  ax-addrcl 7038  ax-mulcl 7039  ax-mulrcl 7040  ax-addcom 7041  ax-mulcom 7042  ax-addass 7043  ax-mulass 7044  ax-distr 7045  ax-i2m1 7046  ax-1rid 7048  ax-0id 7049  ax-rnegex 7050  ax-precex 7051  ax-cnre 7052  ax-pre-ltirr 7053  ax-pre-ltwlin 7054  ax-pre-lttrn 7055  ax-pre-apti 7056  ax-pre-ltadd 7057  ax-pre-mulgt0 7058  ax-pre-mulext 7059
This theorem depends on definitions:  df-bi 114  df-dc 754  df-3or 897  df-3an 898  df-tru 1262  df-fal 1265  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ne 2221  df-nel 2315  df-ral 2328  df-rex 2329  df-reu 2330  df-rmo 2331  df-rab 2332  df-v 2576  df-sbc 2787  df-csb 2880  df-dif 2947  df-un 2949  df-in 2951  df-ss 2958  df-nul 3252  df-pw 3388  df-sn 3408  df-pr 3409  df-op 3411  df-uni 3608  df-int 3643  df-iun 3686  df-br 3792  df-opab 3846  df-mpt 3847  df-tr 3882  df-eprel 4053  df-id 4057  df-po 4060  df-iso 4061  df-iord 4130  df-on 4132  df-suc 4135  df-iom 4341  df-xp 4378  df-rel 4379  df-cnv 4380  df-co 4381  df-dm 4382  df-rn 4383  df-res 4384  df-ima 4385  df-iota 4894  df-fun 4931  df-fn 4932  df-f 4933  df-f1 4934  df-fo 4935  df-f1o 4936  df-fv 4937  df-riota 5495  df-ov 5542  df-oprab 5543  df-mpt2 5544  df-1st 5794  df-2nd 5795  df-recs 5950  df-irdg 5987  df-1o 6031  df-2o 6032  df-oadd 6035  df-omul 6036  df-er 6136  df-ec 6138  df-qs 6142  df-ni 6459  df-pli 6460  df-mi 6461  df-lti 6462  df-plpq 6499  df-mpq 6500  df-enq 6502  df-nqqs 6503  df-plqqs 6504  df-mqqs 6505  df-1nqqs 6506  df-rq 6507  df-ltnqqs 6508  df-enq0 6579  df-nq0 6580  df-0nq0 6581  df-plq0 6582  df-mq0 6583  df-inp 6621  df-i1p 6622  df-iplp 6623  df-iltp 6625  df-enr 6868  df-nr 6869  df-ltr 6872  df-0r 6873  df-1r 6874  df-0 6953  df-1 6954  df-r 6956  df-lt 6959  df-pnf 7120  df-mnf 7121  df-xr 7122  df-ltxr 7123  df-le 7124  df-sub 7246  df-neg 7247  df-reap 7639  df-ap 7646  df-div 7725  df-2 8048  df-cj 9663  df-re 9664  df-im 9665
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator