ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  recexprlemm GIF version

Theorem recexprlemm 7425
Description: 𝐵 is inhabited. Lemma for recexpr 7439. (Contributed by Jim Kingdon, 27-Dec-2019.)
Hypothesis
Ref Expression
recexpr.1 𝐵 = ⟨{𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴))}, {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧ (*Q𝑦) ∈ (1st𝐴))}⟩
Assertion
Ref Expression
recexprlemm (𝐴P → (∃𝑞Q 𝑞 ∈ (1st𝐵) ∧ ∃𝑟Q 𝑟 ∈ (2nd𝐵)))
Distinct variable groups:   𝑟,𝑞,𝑥,𝑦,𝐴   𝐵,𝑞,𝑟,𝑥,𝑦

Proof of Theorem recexprlemm
StepHypRef Expression
1 prop 7276 . . 3 (𝐴P → ⟨(1st𝐴), (2nd𝐴)⟩ ∈ P)
2 prmu 7279 . . 3 (⟨(1st𝐴), (2nd𝐴)⟩ ∈ P → ∃𝑥Q 𝑥 ∈ (2nd𝐴))
3 recclnq 7193 . . . . . . 7 (𝑥Q → (*Q𝑥) ∈ Q)
4 nsmallnqq 7213 . . . . . . 7 ((*Q𝑥) ∈ Q → ∃𝑞Q 𝑞 <Q (*Q𝑥))
53, 4syl 14 . . . . . 6 (𝑥Q → ∃𝑞Q 𝑞 <Q (*Q𝑥))
65adantr 274 . . . . 5 ((𝑥Q𝑥 ∈ (2nd𝐴)) → ∃𝑞Q 𝑞 <Q (*Q𝑥))
7 recrecnq 7195 . . . . . . . . . . . 12 (𝑥Q → (*Q‘(*Q𝑥)) = 𝑥)
87eleq1d 2206 . . . . . . . . . . 11 (𝑥Q → ((*Q‘(*Q𝑥)) ∈ (2nd𝐴) ↔ 𝑥 ∈ (2nd𝐴)))
98anbi2d 459 . . . . . . . . . 10 (𝑥Q → ((𝑞 <Q (*Q𝑥) ∧ (*Q‘(*Q𝑥)) ∈ (2nd𝐴)) ↔ (𝑞 <Q (*Q𝑥) ∧ 𝑥 ∈ (2nd𝐴))))
10 breq2 3928 . . . . . . . . . . . . 13 (𝑦 = (*Q𝑥) → (𝑞 <Q 𝑦𝑞 <Q (*Q𝑥)))
11 fveq2 5414 . . . . . . . . . . . . . 14 (𝑦 = (*Q𝑥) → (*Q𝑦) = (*Q‘(*Q𝑥)))
1211eleq1d 2206 . . . . . . . . . . . . 13 (𝑦 = (*Q𝑥) → ((*Q𝑦) ∈ (2nd𝐴) ↔ (*Q‘(*Q𝑥)) ∈ (2nd𝐴)))
1310, 12anbi12d 464 . . . . . . . . . . . 12 (𝑦 = (*Q𝑥) → ((𝑞 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴)) ↔ (𝑞 <Q (*Q𝑥) ∧ (*Q‘(*Q𝑥)) ∈ (2nd𝐴))))
1413spcegv 2769 . . . . . . . . . . 11 ((*Q𝑥) ∈ Q → ((𝑞 <Q (*Q𝑥) ∧ (*Q‘(*Q𝑥)) ∈ (2nd𝐴)) → ∃𝑦(𝑞 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴))))
153, 14syl 14 . . . . . . . . . 10 (𝑥Q → ((𝑞 <Q (*Q𝑥) ∧ (*Q‘(*Q𝑥)) ∈ (2nd𝐴)) → ∃𝑦(𝑞 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴))))
169, 15sylbird 169 . . . . . . . . 9 (𝑥Q → ((𝑞 <Q (*Q𝑥) ∧ 𝑥 ∈ (2nd𝐴)) → ∃𝑦(𝑞 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴))))
17 recexpr.1 . . . . . . . . . 10 𝐵 = ⟨{𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴))}, {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧ (*Q𝑦) ∈ (1st𝐴))}⟩
1817recexprlemell 7423 . . . . . . . . 9 (𝑞 ∈ (1st𝐵) ↔ ∃𝑦(𝑞 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴)))
1916, 18syl6ibr 161 . . . . . . . 8 (𝑥Q → ((𝑞 <Q (*Q𝑥) ∧ 𝑥 ∈ (2nd𝐴)) → 𝑞 ∈ (1st𝐵)))
2019expcomd 1417 . . . . . . 7 (𝑥Q → (𝑥 ∈ (2nd𝐴) → (𝑞 <Q (*Q𝑥) → 𝑞 ∈ (1st𝐵))))
2120imp 123 . . . . . 6 ((𝑥Q𝑥 ∈ (2nd𝐴)) → (𝑞 <Q (*Q𝑥) → 𝑞 ∈ (1st𝐵)))
2221reximdv 2531 . . . . 5 ((𝑥Q𝑥 ∈ (2nd𝐴)) → (∃𝑞Q 𝑞 <Q (*Q𝑥) → ∃𝑞Q 𝑞 ∈ (1st𝐵)))
236, 22mpd 13 . . . 4 ((𝑥Q𝑥 ∈ (2nd𝐴)) → ∃𝑞Q 𝑞 ∈ (1st𝐵))
2423rexlimiva 2542 . . 3 (∃𝑥Q 𝑥 ∈ (2nd𝐴) → ∃𝑞Q 𝑞 ∈ (1st𝐵))
251, 2, 243syl 17 . 2 (𝐴P → ∃𝑞Q 𝑞 ∈ (1st𝐵))
26 prml 7278 . . 3 (⟨(1st𝐴), (2nd𝐴)⟩ ∈ P → ∃𝑥Q 𝑥 ∈ (1st𝐴))
27 1nq 7167 . . . . . . . 8 1QQ
28 addclnq 7176 . . . . . . . 8 (((*Q𝑥) ∈ Q ∧ 1QQ) → ((*Q𝑥) +Q 1Q) ∈ Q)
293, 27, 28sylancl 409 . . . . . . 7 (𝑥Q → ((*Q𝑥) +Q 1Q) ∈ Q)
30 ltaddnq 7208 . . . . . . . 8 (((*Q𝑥) ∈ Q ∧ 1QQ) → (*Q𝑥) <Q ((*Q𝑥) +Q 1Q))
313, 27, 30sylancl 409 . . . . . . 7 (𝑥Q → (*Q𝑥) <Q ((*Q𝑥) +Q 1Q))
32 breq2 3928 . . . . . . . 8 (𝑟 = ((*Q𝑥) +Q 1Q) → ((*Q𝑥) <Q 𝑟 ↔ (*Q𝑥) <Q ((*Q𝑥) +Q 1Q)))
3332rspcev 2784 . . . . . . 7 ((((*Q𝑥) +Q 1Q) ∈ Q ∧ (*Q𝑥) <Q ((*Q𝑥) +Q 1Q)) → ∃𝑟Q (*Q𝑥) <Q 𝑟)
3429, 31, 33syl2anc 408 . . . . . 6 (𝑥Q → ∃𝑟Q (*Q𝑥) <Q 𝑟)
3534adantr 274 . . . . 5 ((𝑥Q𝑥 ∈ (1st𝐴)) → ∃𝑟Q (*Q𝑥) <Q 𝑟)
367eleq1d 2206 . . . . . . . . . . 11 (𝑥Q → ((*Q‘(*Q𝑥)) ∈ (1st𝐴) ↔ 𝑥 ∈ (1st𝐴)))
3736anbi2d 459 . . . . . . . . . 10 (𝑥Q → (((*Q𝑥) <Q 𝑟 ∧ (*Q‘(*Q𝑥)) ∈ (1st𝐴)) ↔ ((*Q𝑥) <Q 𝑟𝑥 ∈ (1st𝐴))))
38 breq1 3927 . . . . . . . . . . . . 13 (𝑦 = (*Q𝑥) → (𝑦 <Q 𝑟 ↔ (*Q𝑥) <Q 𝑟))
3911eleq1d 2206 . . . . . . . . . . . . 13 (𝑦 = (*Q𝑥) → ((*Q𝑦) ∈ (1st𝐴) ↔ (*Q‘(*Q𝑥)) ∈ (1st𝐴)))
4038, 39anbi12d 464 . . . . . . . . . . . 12 (𝑦 = (*Q𝑥) → ((𝑦 <Q 𝑟 ∧ (*Q𝑦) ∈ (1st𝐴)) ↔ ((*Q𝑥) <Q 𝑟 ∧ (*Q‘(*Q𝑥)) ∈ (1st𝐴))))
4140spcegv 2769 . . . . . . . . . . 11 ((*Q𝑥) ∈ Q → (((*Q𝑥) <Q 𝑟 ∧ (*Q‘(*Q𝑥)) ∈ (1st𝐴)) → ∃𝑦(𝑦 <Q 𝑟 ∧ (*Q𝑦) ∈ (1st𝐴))))
423, 41syl 14 . . . . . . . . . 10 (𝑥Q → (((*Q𝑥) <Q 𝑟 ∧ (*Q‘(*Q𝑥)) ∈ (1st𝐴)) → ∃𝑦(𝑦 <Q 𝑟 ∧ (*Q𝑦) ∈ (1st𝐴))))
4337, 42sylbird 169 . . . . . . . . 9 (𝑥Q → (((*Q𝑥) <Q 𝑟𝑥 ∈ (1st𝐴)) → ∃𝑦(𝑦 <Q 𝑟 ∧ (*Q𝑦) ∈ (1st𝐴))))
4417recexprlemelu 7424 . . . . . . . . 9 (𝑟 ∈ (2nd𝐵) ↔ ∃𝑦(𝑦 <Q 𝑟 ∧ (*Q𝑦) ∈ (1st𝐴)))
4543, 44syl6ibr 161 . . . . . . . 8 (𝑥Q → (((*Q𝑥) <Q 𝑟𝑥 ∈ (1st𝐴)) → 𝑟 ∈ (2nd𝐵)))
4645expcomd 1417 . . . . . . 7 (𝑥Q → (𝑥 ∈ (1st𝐴) → ((*Q𝑥) <Q 𝑟𝑟 ∈ (2nd𝐵))))
4746imp 123 . . . . . 6 ((𝑥Q𝑥 ∈ (1st𝐴)) → ((*Q𝑥) <Q 𝑟𝑟 ∈ (2nd𝐵)))
4847reximdv 2531 . . . . 5 ((𝑥Q𝑥 ∈ (1st𝐴)) → (∃𝑟Q (*Q𝑥) <Q 𝑟 → ∃𝑟Q 𝑟 ∈ (2nd𝐵)))
4935, 48mpd 13 . . . 4 ((𝑥Q𝑥 ∈ (1st𝐴)) → ∃𝑟Q 𝑟 ∈ (2nd𝐵))
5049rexlimiva 2542 . . 3 (∃𝑥Q 𝑥 ∈ (1st𝐴) → ∃𝑟Q 𝑟 ∈ (2nd𝐵))
511, 26, 503syl 17 . 2 (𝐴P → ∃𝑟Q 𝑟 ∈ (2nd𝐵))
5225, 51jca 304 1 (𝐴P → (∃𝑞Q 𝑞 ∈ (1st𝐵) ∧ ∃𝑟Q 𝑟 ∈ (2nd𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1331  wex 1468  wcel 1480  {cab 2123  wrex 2415  cop 3525   class class class wbr 3924  cfv 5118  (class class class)co 5767  1st c1st 6029  2nd c2nd 6030  Qcnq 7081  1Qc1q 7082   +Q cplq 7083  *Qcrq 7085   <Q cltq 7086  Pcnp 7092
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-coll 4038  ax-sep 4041  ax-nul 4049  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-iinf 4497
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-ral 2419  df-rex 2420  df-reu 2421  df-rab 2423  df-v 2683  df-sbc 2905  df-csb 2999  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-nul 3359  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-int 3767  df-iun 3810  df-br 3925  df-opab 3985  df-mpt 3986  df-tr 4022  df-eprel 4206  df-id 4210  df-iord 4283  df-on 4285  df-suc 4288  df-iom 4500  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-f1 5123  df-fo 5124  df-f1o 5125  df-fv 5126  df-ov 5770  df-oprab 5771  df-mpo 5772  df-1st 6031  df-2nd 6032  df-recs 6195  df-irdg 6260  df-1o 6306  df-oadd 6310  df-omul 6311  df-er 6422  df-ec 6424  df-qs 6428  df-ni 7105  df-pli 7106  df-mi 7107  df-lti 7108  df-plpq 7145  df-mpq 7146  df-enq 7148  df-nqqs 7149  df-plqqs 7150  df-mqqs 7151  df-1nqqs 7152  df-rq 7153  df-ltnqqs 7154  df-inp 7267
This theorem is referenced by:  recexprlempr  7433
  Copyright terms: Public domain W3C validator