ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  recexprlemopu GIF version

Theorem recexprlemopu 6782
Description: The upper cut of 𝐵 is open. Lemma for recexpr 6793. (Contributed by Jim Kingdon, 28-Dec-2019.)
Hypothesis
Ref Expression
recexpr.1 𝐵 = ⟨{𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴))}, {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧ (*Q𝑦) ∈ (1st𝐴))}⟩
Assertion
Ref Expression
recexprlemopu ((𝐴P𝑟Q𝑟 ∈ (2nd𝐵)) → ∃𝑞Q (𝑞 <Q 𝑟𝑞 ∈ (2nd𝐵)))
Distinct variable groups:   𝑟,𝑞,𝑥,𝑦,𝐴   𝐵,𝑞,𝑟,𝑥,𝑦

Proof of Theorem recexprlemopu
StepHypRef Expression
1 recexpr.1 . . . 4 𝐵 = ⟨{𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴))}, {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧ (*Q𝑦) ∈ (1st𝐴))}⟩
21recexprlemelu 6778 . . 3 (𝑟 ∈ (2nd𝐵) ↔ ∃𝑦(𝑦 <Q 𝑟 ∧ (*Q𝑦) ∈ (1st𝐴)))
3 ltbtwnnqq 6570 . . . . . 6 (𝑦 <Q 𝑟 ↔ ∃𝑞Q (𝑦 <Q 𝑞𝑞 <Q 𝑟))
43biimpi 117 . . . . 5 (𝑦 <Q 𝑟 → ∃𝑞Q (𝑦 <Q 𝑞𝑞 <Q 𝑟))
5 simplr 490 . . . . . . . 8 (((𝑦 <Q 𝑞𝑞 <Q 𝑟) ∧ (*Q𝑦) ∈ (1st𝐴)) → 𝑞 <Q 𝑟)
6 19.8a 1498 . . . . . . . . . 10 ((𝑦 <Q 𝑞 ∧ (*Q𝑦) ∈ (1st𝐴)) → ∃𝑦(𝑦 <Q 𝑞 ∧ (*Q𝑦) ∈ (1st𝐴)))
71recexprlemelu 6778 . . . . . . . . . 10 (𝑞 ∈ (2nd𝐵) ↔ ∃𝑦(𝑦 <Q 𝑞 ∧ (*Q𝑦) ∈ (1st𝐴)))
86, 7sylibr 141 . . . . . . . . 9 ((𝑦 <Q 𝑞 ∧ (*Q𝑦) ∈ (1st𝐴)) → 𝑞 ∈ (2nd𝐵))
98adantlr 454 . . . . . . . 8 (((𝑦 <Q 𝑞𝑞 <Q 𝑟) ∧ (*Q𝑦) ∈ (1st𝐴)) → 𝑞 ∈ (2nd𝐵))
105, 9jca 294 . . . . . . 7 (((𝑦 <Q 𝑞𝑞 <Q 𝑟) ∧ (*Q𝑦) ∈ (1st𝐴)) → (𝑞 <Q 𝑟𝑞 ∈ (2nd𝐵)))
1110expcom 113 . . . . . 6 ((*Q𝑦) ∈ (1st𝐴) → ((𝑦 <Q 𝑞𝑞 <Q 𝑟) → (𝑞 <Q 𝑟𝑞 ∈ (2nd𝐵))))
1211reximdv 2437 . . . . 5 ((*Q𝑦) ∈ (1st𝐴) → (∃𝑞Q (𝑦 <Q 𝑞𝑞 <Q 𝑟) → ∃𝑞Q (𝑞 <Q 𝑟𝑞 ∈ (2nd𝐵))))
134, 12mpan9 269 . . . 4 ((𝑦 <Q 𝑟 ∧ (*Q𝑦) ∈ (1st𝐴)) → ∃𝑞Q (𝑞 <Q 𝑟𝑞 ∈ (2nd𝐵)))
1413exlimiv 1505 . . 3 (∃𝑦(𝑦 <Q 𝑟 ∧ (*Q𝑦) ∈ (1st𝐴)) → ∃𝑞Q (𝑞 <Q 𝑟𝑞 ∈ (2nd𝐵)))
152, 14sylbi 118 . 2 (𝑟 ∈ (2nd𝐵) → ∃𝑞Q (𝑞 <Q 𝑟𝑞 ∈ (2nd𝐵)))
16153ad2ant3 938 1 ((𝐴P𝑟Q𝑟 ∈ (2nd𝐵)) → ∃𝑞Q (𝑞 <Q 𝑟𝑞 ∈ (2nd𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 101  w3a 896   = wceq 1259  wex 1397  wcel 1409  {cab 2042  wrex 2324  cop 3405   class class class wbr 3791  cfv 4929  1st c1st 5792  2nd c2nd 5793  Qcnq 6435  *Qcrq 6439   <Q cltq 6440  Pcnp 6446
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-in1 554  ax-in2 555  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-13 1420  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-coll 3899  ax-sep 3902  ax-nul 3910  ax-pow 3954  ax-pr 3971  ax-un 4197  ax-setind 4289  ax-iinf 4338
This theorem depends on definitions:  df-bi 114  df-dc 754  df-3or 897  df-3an 898  df-tru 1262  df-fal 1265  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ne 2221  df-ral 2328  df-rex 2329  df-reu 2330  df-rab 2332  df-v 2576  df-sbc 2787  df-csb 2880  df-dif 2947  df-un 2949  df-in 2951  df-ss 2958  df-nul 3252  df-pw 3388  df-sn 3408  df-pr 3409  df-op 3411  df-uni 3608  df-int 3643  df-iun 3686  df-br 3792  df-opab 3846  df-mpt 3847  df-tr 3882  df-eprel 4053  df-id 4057  df-po 4060  df-iso 4061  df-iord 4130  df-on 4132  df-suc 4135  df-iom 4341  df-xp 4378  df-rel 4379  df-cnv 4380  df-co 4381  df-dm 4382  df-rn 4383  df-res 4384  df-ima 4385  df-iota 4894  df-fun 4931  df-fn 4932  df-f 4933  df-f1 4934  df-fo 4935  df-f1o 4936  df-fv 4937  df-ov 5542  df-oprab 5543  df-mpt2 5544  df-1st 5794  df-2nd 5795  df-recs 5950  df-irdg 5987  df-1o 6031  df-oadd 6035  df-omul 6036  df-er 6136  df-ec 6138  df-qs 6142  df-ni 6459  df-pli 6460  df-mi 6461  df-lti 6462  df-plpq 6499  df-mpq 6500  df-enq 6502  df-nqqs 6503  df-plqqs 6504  df-mqqs 6505  df-1nqqs 6506  df-rq 6507  df-ltnqqs 6508
This theorem is referenced by:  recexprlemrnd  6784
  Copyright terms: Public domain W3C validator