ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  recexre GIF version

Theorem recexre 7642
Description: Existence of reciprocal of real number. (Contributed by Jim Kingdon, 29-Jan-2020.)
Assertion
Ref Expression
recexre ((𝐴 ∈ ℝ ∧ 𝐴 # 0) → ∃𝑥 ∈ ℝ (𝐴 · 𝑥) = 1)
Distinct variable group:   𝑥,𝐴

Proof of Theorem recexre
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 0re 7084 . . . 4 0 ∈ ℝ
2 reapval 7640 . . . 4 ((𝐴 ∈ ℝ ∧ 0 ∈ ℝ) → (𝐴 # 0 ↔ (𝐴 < 0 ∨ 0 < 𝐴)))
31, 2mpan2 409 . . 3 (𝐴 ∈ ℝ → (𝐴 # 0 ↔ (𝐴 < 0 ∨ 0 < 𝐴)))
4 lt0neg1 7536 . . . . . . . . . 10 (𝐴 ∈ ℝ → (𝐴 < 0 ↔ 0 < -𝐴))
5 renegcl 7334 . . . . . . . . . . 11 (𝐴 ∈ ℝ → -𝐴 ∈ ℝ)
6 ltxrlt 7143 . . . . . . . . . . 11 ((0 ∈ ℝ ∧ -𝐴 ∈ ℝ) → (0 < -𝐴 ↔ 0 < -𝐴))
71, 5, 6sylancr 399 . . . . . . . . . 10 (𝐴 ∈ ℝ → (0 < -𝐴 ↔ 0 < -𝐴))
84, 7bitrd 181 . . . . . . . . 9 (𝐴 ∈ ℝ → (𝐴 < 0 ↔ 0 < -𝐴))
98pm5.32i 435 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐴 < 0) ↔ (𝐴 ∈ ℝ ∧ 0 < -𝐴))
10 ax-precex 7051 . . . . . . . . . 10 ((-𝐴 ∈ ℝ ∧ 0 < -𝐴) → ∃𝑦 ∈ ℝ (0 < 𝑦 ∧ (-𝐴 · 𝑦) = 1))
11 simpr 107 . . . . . . . . . . 11 ((0 < 𝑦 ∧ (-𝐴 · 𝑦) = 1) → (-𝐴 · 𝑦) = 1)
1211reximi 2433 . . . . . . . . . 10 (∃𝑦 ∈ ℝ (0 < 𝑦 ∧ (-𝐴 · 𝑦) = 1) → ∃𝑦 ∈ ℝ (-𝐴 · 𝑦) = 1)
1310, 12syl 14 . . . . . . . . 9 ((-𝐴 ∈ ℝ ∧ 0 < -𝐴) → ∃𝑦 ∈ ℝ (-𝐴 · 𝑦) = 1)
145, 13sylan 271 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 0 < -𝐴) → ∃𝑦 ∈ ℝ (-𝐴 · 𝑦) = 1)
159, 14sylbi 118 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐴 < 0) → ∃𝑦 ∈ ℝ (-𝐴 · 𝑦) = 1)
16 recn 7071 . . . . . . . . . . . . 13 (𝑦 ∈ ℝ → 𝑦 ∈ ℂ)
1716negnegd 7375 . . . . . . . . . . . 12 (𝑦 ∈ ℝ → --𝑦 = 𝑦)
1817oveq2d 5555 . . . . . . . . . . 11 (𝑦 ∈ ℝ → (-𝐴 · --𝑦) = (-𝐴 · 𝑦))
1918eqeq1d 2064 . . . . . . . . . 10 (𝑦 ∈ ℝ → ((-𝐴 · --𝑦) = 1 ↔ (-𝐴 · 𝑦) = 1))
2019pm5.32i 435 . . . . . . . . 9 ((𝑦 ∈ ℝ ∧ (-𝐴 · --𝑦) = 1) ↔ (𝑦 ∈ ℝ ∧ (-𝐴 · 𝑦) = 1))
21 renegcl 7334 . . . . . . . . . 10 (𝑦 ∈ ℝ → -𝑦 ∈ ℝ)
22 negeq 7266 . . . . . . . . . . . . 13 (𝑥 = -𝑦 → -𝑥 = --𝑦)
2322oveq2d 5555 . . . . . . . . . . . 12 (𝑥 = -𝑦 → (-𝐴 · -𝑥) = (-𝐴 · --𝑦))
2423eqeq1d 2064 . . . . . . . . . . 11 (𝑥 = -𝑦 → ((-𝐴 · -𝑥) = 1 ↔ (-𝐴 · --𝑦) = 1))
2524rspcev 2673 . . . . . . . . . 10 ((-𝑦 ∈ ℝ ∧ (-𝐴 · --𝑦) = 1) → ∃𝑥 ∈ ℝ (-𝐴 · -𝑥) = 1)
2621, 25sylan 271 . . . . . . . . 9 ((𝑦 ∈ ℝ ∧ (-𝐴 · --𝑦) = 1) → ∃𝑥 ∈ ℝ (-𝐴 · -𝑥) = 1)
2720, 26sylbir 129 . . . . . . . 8 ((𝑦 ∈ ℝ ∧ (-𝐴 · 𝑦) = 1) → ∃𝑥 ∈ ℝ (-𝐴 · -𝑥) = 1)
2827adantl 266 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐴 < 0) ∧ (𝑦 ∈ ℝ ∧ (-𝐴 · 𝑦) = 1)) → ∃𝑥 ∈ ℝ (-𝐴 · -𝑥) = 1)
2915, 28rexlimddv 2454 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐴 < 0) → ∃𝑥 ∈ ℝ (-𝐴 · -𝑥) = 1)
30 recn 7071 . . . . . . . . . 10 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
31 recn 7071 . . . . . . . . . 10 (𝑥 ∈ ℝ → 𝑥 ∈ ℂ)
32 mul2neg 7466 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (-𝐴 · -𝑥) = (𝐴 · 𝑥))
3330, 31, 32syl2an 277 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (-𝐴 · -𝑥) = (𝐴 · 𝑥))
3433eqeq1d 2064 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((-𝐴 · -𝑥) = 1 ↔ (𝐴 · 𝑥) = 1))
3534rexbidva 2340 . . . . . . 7 (𝐴 ∈ ℝ → (∃𝑥 ∈ ℝ (-𝐴 · -𝑥) = 1 ↔ ∃𝑥 ∈ ℝ (𝐴 · 𝑥) = 1))
3635adantr 265 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐴 < 0) → (∃𝑥 ∈ ℝ (-𝐴 · -𝑥) = 1 ↔ ∃𝑥 ∈ ℝ (𝐴 · 𝑥) = 1))
3729, 36mpbid 139 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐴 < 0) → ∃𝑥 ∈ ℝ (𝐴 · 𝑥) = 1)
3837ex 112 . . . 4 (𝐴 ∈ ℝ → (𝐴 < 0 → ∃𝑥 ∈ ℝ (𝐴 · 𝑥) = 1))
39 ltxrlt 7143 . . . . . . . 8 ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 < 𝐴 ↔ 0 < 𝐴))
401, 39mpan 408 . . . . . . 7 (𝐴 ∈ ℝ → (0 < 𝐴 ↔ 0 < 𝐴))
4140pm5.32i 435 . . . . . 6 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴))
42 ax-precex 7051 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → ∃𝑥 ∈ ℝ (0 < 𝑥 ∧ (𝐴 · 𝑥) = 1))
43 simpr 107 . . . . . . . 8 ((0 < 𝑥 ∧ (𝐴 · 𝑥) = 1) → (𝐴 · 𝑥) = 1)
4443reximi 2433 . . . . . . 7 (∃𝑥 ∈ ℝ (0 < 𝑥 ∧ (𝐴 · 𝑥) = 1) → ∃𝑥 ∈ ℝ (𝐴 · 𝑥) = 1)
4542, 44syl 14 . . . . . 6 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → ∃𝑥 ∈ ℝ (𝐴 · 𝑥) = 1)
4641, 45sylbi 118 . . . . 5 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → ∃𝑥 ∈ ℝ (𝐴 · 𝑥) = 1)
4746ex 112 . . . 4 (𝐴 ∈ ℝ → (0 < 𝐴 → ∃𝑥 ∈ ℝ (𝐴 · 𝑥) = 1))
4838, 47jaod 647 . . 3 (𝐴 ∈ ℝ → ((𝐴 < 0 ∨ 0 < 𝐴) → ∃𝑥 ∈ ℝ (𝐴 · 𝑥) = 1))
493, 48sylbid 143 . 2 (𝐴 ∈ ℝ → (𝐴 # 0 → ∃𝑥 ∈ ℝ (𝐴 · 𝑥) = 1))
5049imp 119 1 ((𝐴 ∈ ℝ ∧ 𝐴 # 0) → ∃𝑥 ∈ ℝ (𝐴 · 𝑥) = 1)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 101  wb 102  wo 639   = wceq 1259  wcel 1409  wrex 2324   class class class wbr 3791  (class class class)co 5539  cc 6944  cr 6945  0cc0 6946  1c1 6947   < cltrr 6950   · cmul 6951   < clt 7118  -cneg 7245   # creap 7638
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-in1 554  ax-in2 555  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-13 1420  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-sep 3902  ax-pow 3954  ax-pr 3971  ax-un 4197  ax-setind 4289  ax-cnex 7032  ax-resscn 7033  ax-1cn 7034  ax-1re 7035  ax-icn 7036  ax-addcl 7037  ax-addrcl 7038  ax-mulcl 7039  ax-addcom 7041  ax-mulcom 7042  ax-addass 7043  ax-distr 7045  ax-i2m1 7046  ax-0id 7049  ax-rnegex 7050  ax-precex 7051  ax-cnre 7052  ax-pre-ltadd 7057
This theorem depends on definitions:  df-bi 114  df-3an 898  df-tru 1262  df-fal 1265  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ne 2221  df-nel 2315  df-ral 2328  df-rex 2329  df-reu 2330  df-rab 2332  df-v 2576  df-sbc 2787  df-dif 2947  df-un 2949  df-in 2951  df-ss 2958  df-pw 3388  df-sn 3408  df-pr 3409  df-op 3411  df-uni 3608  df-br 3792  df-opab 3846  df-id 4057  df-xp 4378  df-rel 4379  df-cnv 4380  df-co 4381  df-dm 4382  df-iota 4894  df-fun 4931  df-fv 4937  df-riota 5495  df-ov 5542  df-oprab 5543  df-mpt2 5544  df-pnf 7120  df-mnf 7121  df-ltxr 7123  df-sub 7246  df-neg 7247  df-reap 7639
This theorem is referenced by:  rimul  7649  recexap  7707  rerecclap  7780
  Copyright terms: Public domain W3C validator