ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  recexre GIF version

Theorem recexre 8333
Description: Existence of reciprocal of real number. (Contributed by Jim Kingdon, 29-Jan-2020.)
Assertion
Ref Expression
recexre ((𝐴 ∈ ℝ ∧ 𝐴 # 0) → ∃𝑥 ∈ ℝ (𝐴 · 𝑥) = 1)
Distinct variable group:   𝑥,𝐴

Proof of Theorem recexre
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 0re 7759 . . . 4 0 ∈ ℝ
2 reapval 8331 . . . 4 ((𝐴 ∈ ℝ ∧ 0 ∈ ℝ) → (𝐴 # 0 ↔ (𝐴 < 0 ∨ 0 < 𝐴)))
31, 2mpan2 421 . . 3 (𝐴 ∈ ℝ → (𝐴 # 0 ↔ (𝐴 < 0 ∨ 0 < 𝐴)))
4 lt0neg1 8223 . . . . . . . . . 10 (𝐴 ∈ ℝ → (𝐴 < 0 ↔ 0 < -𝐴))
5 renegcl 8016 . . . . . . . . . . 11 (𝐴 ∈ ℝ → -𝐴 ∈ ℝ)
6 ltxrlt 7823 . . . . . . . . . . 11 ((0 ∈ ℝ ∧ -𝐴 ∈ ℝ) → (0 < -𝐴 ↔ 0 < -𝐴))
71, 5, 6sylancr 410 . . . . . . . . . 10 (𝐴 ∈ ℝ → (0 < -𝐴 ↔ 0 < -𝐴))
84, 7bitrd 187 . . . . . . . . 9 (𝐴 ∈ ℝ → (𝐴 < 0 ↔ 0 < -𝐴))
98pm5.32i 449 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐴 < 0) ↔ (𝐴 ∈ ℝ ∧ 0 < -𝐴))
10 ax-precex 7723 . . . . . . . . . 10 ((-𝐴 ∈ ℝ ∧ 0 < -𝐴) → ∃𝑦 ∈ ℝ (0 < 𝑦 ∧ (-𝐴 · 𝑦) = 1))
11 simpr 109 . . . . . . . . . . 11 ((0 < 𝑦 ∧ (-𝐴 · 𝑦) = 1) → (-𝐴 · 𝑦) = 1)
1211reximi 2527 . . . . . . . . . 10 (∃𝑦 ∈ ℝ (0 < 𝑦 ∧ (-𝐴 · 𝑦) = 1) → ∃𝑦 ∈ ℝ (-𝐴 · 𝑦) = 1)
1310, 12syl 14 . . . . . . . . 9 ((-𝐴 ∈ ℝ ∧ 0 < -𝐴) → ∃𝑦 ∈ ℝ (-𝐴 · 𝑦) = 1)
145, 13sylan 281 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 0 < -𝐴) → ∃𝑦 ∈ ℝ (-𝐴 · 𝑦) = 1)
159, 14sylbi 120 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐴 < 0) → ∃𝑦 ∈ ℝ (-𝐴 · 𝑦) = 1)
16 recn 7746 . . . . . . . . . . . . 13 (𝑦 ∈ ℝ → 𝑦 ∈ ℂ)
1716negnegd 8057 . . . . . . . . . . . 12 (𝑦 ∈ ℝ → --𝑦 = 𝑦)
1817oveq2d 5783 . . . . . . . . . . 11 (𝑦 ∈ ℝ → (-𝐴 · --𝑦) = (-𝐴 · 𝑦))
1918eqeq1d 2146 . . . . . . . . . 10 (𝑦 ∈ ℝ → ((-𝐴 · --𝑦) = 1 ↔ (-𝐴 · 𝑦) = 1))
2019pm5.32i 449 . . . . . . . . 9 ((𝑦 ∈ ℝ ∧ (-𝐴 · --𝑦) = 1) ↔ (𝑦 ∈ ℝ ∧ (-𝐴 · 𝑦) = 1))
21 renegcl 8016 . . . . . . . . . 10 (𝑦 ∈ ℝ → -𝑦 ∈ ℝ)
22 negeq 7948 . . . . . . . . . . . . 13 (𝑥 = -𝑦 → -𝑥 = --𝑦)
2322oveq2d 5783 . . . . . . . . . . . 12 (𝑥 = -𝑦 → (-𝐴 · -𝑥) = (-𝐴 · --𝑦))
2423eqeq1d 2146 . . . . . . . . . . 11 (𝑥 = -𝑦 → ((-𝐴 · -𝑥) = 1 ↔ (-𝐴 · --𝑦) = 1))
2524rspcev 2784 . . . . . . . . . 10 ((-𝑦 ∈ ℝ ∧ (-𝐴 · --𝑦) = 1) → ∃𝑥 ∈ ℝ (-𝐴 · -𝑥) = 1)
2621, 25sylan 281 . . . . . . . . 9 ((𝑦 ∈ ℝ ∧ (-𝐴 · --𝑦) = 1) → ∃𝑥 ∈ ℝ (-𝐴 · -𝑥) = 1)
2720, 26sylbir 134 . . . . . . . 8 ((𝑦 ∈ ℝ ∧ (-𝐴 · 𝑦) = 1) → ∃𝑥 ∈ ℝ (-𝐴 · -𝑥) = 1)
2827adantl 275 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐴 < 0) ∧ (𝑦 ∈ ℝ ∧ (-𝐴 · 𝑦) = 1)) → ∃𝑥 ∈ ℝ (-𝐴 · -𝑥) = 1)
2915, 28rexlimddv 2552 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐴 < 0) → ∃𝑥 ∈ ℝ (-𝐴 · -𝑥) = 1)
30 recn 7746 . . . . . . . . . 10 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
31 recn 7746 . . . . . . . . . 10 (𝑥 ∈ ℝ → 𝑥 ∈ ℂ)
32 mul2neg 8153 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (-𝐴 · -𝑥) = (𝐴 · 𝑥))
3330, 31, 32syl2an 287 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (-𝐴 · -𝑥) = (𝐴 · 𝑥))
3433eqeq1d 2146 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((-𝐴 · -𝑥) = 1 ↔ (𝐴 · 𝑥) = 1))
3534rexbidva 2432 . . . . . . 7 (𝐴 ∈ ℝ → (∃𝑥 ∈ ℝ (-𝐴 · -𝑥) = 1 ↔ ∃𝑥 ∈ ℝ (𝐴 · 𝑥) = 1))
3635adantr 274 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐴 < 0) → (∃𝑥 ∈ ℝ (-𝐴 · -𝑥) = 1 ↔ ∃𝑥 ∈ ℝ (𝐴 · 𝑥) = 1))
3729, 36mpbid 146 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐴 < 0) → ∃𝑥 ∈ ℝ (𝐴 · 𝑥) = 1)
3837ex 114 . . . 4 (𝐴 ∈ ℝ → (𝐴 < 0 → ∃𝑥 ∈ ℝ (𝐴 · 𝑥) = 1))
39 ltxrlt 7823 . . . . . . . 8 ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 < 𝐴 ↔ 0 < 𝐴))
401, 39mpan 420 . . . . . . 7 (𝐴 ∈ ℝ → (0 < 𝐴 ↔ 0 < 𝐴))
4140pm5.32i 449 . . . . . 6 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴))
42 ax-precex 7723 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → ∃𝑥 ∈ ℝ (0 < 𝑥 ∧ (𝐴 · 𝑥) = 1))
43 simpr 109 . . . . . . . 8 ((0 < 𝑥 ∧ (𝐴 · 𝑥) = 1) → (𝐴 · 𝑥) = 1)
4443reximi 2527 . . . . . . 7 (∃𝑥 ∈ ℝ (0 < 𝑥 ∧ (𝐴 · 𝑥) = 1) → ∃𝑥 ∈ ℝ (𝐴 · 𝑥) = 1)
4542, 44syl 14 . . . . . 6 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → ∃𝑥 ∈ ℝ (𝐴 · 𝑥) = 1)
4641, 45sylbi 120 . . . . 5 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → ∃𝑥 ∈ ℝ (𝐴 · 𝑥) = 1)
4746ex 114 . . . 4 (𝐴 ∈ ℝ → (0 < 𝐴 → ∃𝑥 ∈ ℝ (𝐴 · 𝑥) = 1))
4838, 47jaod 706 . . 3 (𝐴 ∈ ℝ → ((𝐴 < 0 ∨ 0 < 𝐴) → ∃𝑥 ∈ ℝ (𝐴 · 𝑥) = 1))
493, 48sylbid 149 . 2 (𝐴 ∈ ℝ → (𝐴 # 0 → ∃𝑥 ∈ ℝ (𝐴 · 𝑥) = 1))
5049imp 123 1 ((𝐴 ∈ ℝ ∧ 𝐴 # 0) → ∃𝑥 ∈ ℝ (𝐴 · 𝑥) = 1)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wo 697   = wceq 1331  wcel 1480  wrex 2415   class class class wbr 3924  (class class class)co 5767  cc 7611  cr 7612  0cc0 7613  1c1 7614   < cltrr 7617   · cmul 7618   < clt 7793  -cneg 7927   # creap 8329
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-sep 4041  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-cnex 7704  ax-resscn 7705  ax-1cn 7706  ax-1re 7707  ax-icn 7708  ax-addcl 7709  ax-addrcl 7710  ax-mulcl 7711  ax-addcom 7713  ax-mulcom 7714  ax-addass 7715  ax-distr 7717  ax-i2m1 7718  ax-0id 7721  ax-rnegex 7722  ax-precex 7723  ax-cnre 7724  ax-pre-ltadd 7729
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-nel 2402  df-ral 2419  df-rex 2420  df-reu 2421  df-rab 2423  df-v 2683  df-sbc 2905  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-br 3925  df-opab 3985  df-id 4210  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-iota 5083  df-fun 5120  df-fv 5126  df-riota 5723  df-ov 5770  df-oprab 5771  df-mpo 5772  df-pnf 7795  df-mnf 7796  df-ltxr 7798  df-sub 7928  df-neg 7929  df-reap 8330
This theorem is referenced by:  rimul  8340  recexap  8407  rerecclap  8483
  Copyright terms: Public domain W3C validator