![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > recni | GIF version |
Description: A real number is a complex number. (Contributed by NM, 1-Mar-1995.) |
Ref | Expression |
---|---|
recni.1 | ⊢ 𝐴 ∈ ℝ |
Ref | Expression |
---|---|
recni | ⊢ 𝐴 ∈ ℂ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-resscn 7166 | . 2 ⊢ ℝ ⊆ ℂ | |
2 | recni.1 | . 2 ⊢ 𝐴 ∈ ℝ | |
3 | 1, 2 | sselii 3006 | 1 ⊢ 𝐴 ∈ ℂ |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 1434 ℂcc 7077 ℝcr 7078 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-11 1438 ax-4 1441 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2065 ax-resscn 7166 |
This theorem depends on definitions: df-bi 115 df-nf 1391 df-sb 1688 df-clab 2070 df-cleq 2076 df-clel 2079 df-in 2989 df-ss 2996 |
This theorem is referenced by: resubcli 7474 ltapii 7836 nncni 8152 2cn 8213 3cn 8217 4cn 8220 5cn 8222 6cn 8224 7cn 8226 8cn 8228 9cn 8230 halfcn 8348 8th4div3 8353 nn0cni 8403 numltc 8619 sqge0i 9695 lt2sqi 9696 le2sqi 9697 sq11i 9698 sqrtmsq2i 10206 sqrt2irraplemnn 10748 |
Copyright terms: Public domain | W3C validator |