Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  recreclt GIF version

Theorem recreclt 7941
 Description: Given a positive number 𝐴, construct a new positive number less than both 𝐴 and 1. (Contributed by NM, 28-Dec-2005.)
Assertion
Ref Expression
recreclt ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → ((1 / (1 + (1 / 𝐴))) < 1 ∧ (1 / (1 + (1 / 𝐴))) < 𝐴))

Proof of Theorem recreclt
StepHypRef Expression
1 recgt0 7891 . . . 4 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 0 < (1 / 𝐴))
2 simpl 106 . . . . . 6 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 𝐴 ∈ ℝ)
3 gt0ap0 7690 . . . . . 6 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 𝐴 # 0)
42, 3rerecclapd 7882 . . . . 5 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → (1 / 𝐴) ∈ ℝ)
5 1re 7084 . . . . 5 1 ∈ ℝ
6 ltaddpos 7521 . . . . 5 (((1 / 𝐴) ∈ ℝ ∧ 1 ∈ ℝ) → (0 < (1 / 𝐴) ↔ 1 < (1 + (1 / 𝐴))))
74, 5, 6sylancl 398 . . . 4 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → (0 < (1 / 𝐴) ↔ 1 < (1 + (1 / 𝐴))))
81, 7mpbid 139 . . 3 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 1 < (1 + (1 / 𝐴)))
9 readdcl 7065 . . . . 5 ((1 ∈ ℝ ∧ (1 / 𝐴) ∈ ℝ) → (1 + (1 / 𝐴)) ∈ ℝ)
105, 4, 9sylancr 399 . . . 4 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → (1 + (1 / 𝐴)) ∈ ℝ)
11 0lt1 7202 . . . . . 6 0 < 1
12 0re 7085 . . . . . . . 8 0 ∈ ℝ
13 lttr 7151 . . . . . . . 8 ((0 ∈ ℝ ∧ 1 ∈ ℝ ∧ (1 + (1 / 𝐴)) ∈ ℝ) → ((0 < 1 ∧ 1 < (1 + (1 / 𝐴))) → 0 < (1 + (1 / 𝐴))))
1412, 5, 13mp3an12 1233 . . . . . . 7 ((1 + (1 / 𝐴)) ∈ ℝ → ((0 < 1 ∧ 1 < (1 + (1 / 𝐴))) → 0 < (1 + (1 / 𝐴))))
1510, 14syl 14 . . . . . 6 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → ((0 < 1 ∧ 1 < (1 + (1 / 𝐴))) → 0 < (1 + (1 / 𝐴))))
1611, 15mpani 414 . . . . 5 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → (1 < (1 + (1 / 𝐴)) → 0 < (1 + (1 / 𝐴))))
178, 16mpd 13 . . . 4 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 0 < (1 + (1 / 𝐴)))
18 recgt1 7938 . . . 4 (((1 + (1 / 𝐴)) ∈ ℝ ∧ 0 < (1 + (1 / 𝐴))) → (1 < (1 + (1 / 𝐴)) ↔ (1 / (1 + (1 / 𝐴))) < 1))
1910, 17, 18syl2anc 397 . . 3 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → (1 < (1 + (1 / 𝐴)) ↔ (1 / (1 + (1 / 𝐴))) < 1))
208, 19mpbid 139 . 2 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → (1 / (1 + (1 / 𝐴))) < 1)
21 ltaddpos 7521 . . . . . 6 ((1 ∈ ℝ ∧ (1 / 𝐴) ∈ ℝ) → (0 < 1 ↔ (1 / 𝐴) < ((1 / 𝐴) + 1)))
225, 4, 21sylancr 399 . . . . 5 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → (0 < 1 ↔ (1 / 𝐴) < ((1 / 𝐴) + 1)))
2311, 22mpbii 140 . . . 4 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → (1 / 𝐴) < ((1 / 𝐴) + 1))
244recnd 7113 . . . . 5 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → (1 / 𝐴) ∈ ℂ)
25 ax-1cn 7035 . . . . 5 1 ∈ ℂ
26 addcom 7211 . . . . 5 (((1 / 𝐴) ∈ ℂ ∧ 1 ∈ ℂ) → ((1 / 𝐴) + 1) = (1 + (1 / 𝐴)))
2724, 25, 26sylancl 398 . . . 4 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → ((1 / 𝐴) + 1) = (1 + (1 / 𝐴)))
2823, 27breqtrd 3816 . . 3 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → (1 / 𝐴) < (1 + (1 / 𝐴)))
29 simpr 107 . . . 4 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 0 < 𝐴)
30 ltrec1 7929 . . . 4 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ ((1 + (1 / 𝐴)) ∈ ℝ ∧ 0 < (1 + (1 / 𝐴)))) → ((1 / 𝐴) < (1 + (1 / 𝐴)) ↔ (1 / (1 + (1 / 𝐴))) < 𝐴))
312, 29, 10, 17, 30syl22anc 1147 . . 3 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → ((1 / 𝐴) < (1 + (1 / 𝐴)) ↔ (1 / (1 + (1 / 𝐴))) < 𝐴))
3228, 31mpbid 139 . 2 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → (1 / (1 + (1 / 𝐴))) < 𝐴)
3320, 32jca 294 1 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → ((1 / (1 + (1 / 𝐴))) < 1 ∧ (1 / (1 + (1 / 𝐴))) < 𝐴))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 101   ↔ wb 102   = wceq 1259   ∈ wcel 1409   class class class wbr 3792  (class class class)co 5540  ℂcc 6945  ℝcr 6946  0cc0 6947  1c1 6948   + caddc 6950   < clt 7119   / cdiv 7725 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-in1 554  ax-in2 555  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-13 1420  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-coll 3900  ax-sep 3903  ax-nul 3911  ax-pow 3955  ax-pr 3972  ax-un 4198  ax-setind 4290  ax-iinf 4339  ax-cnex 7033  ax-resscn 7034  ax-1cn 7035  ax-1re 7036  ax-icn 7037  ax-addcl 7038  ax-addrcl 7039  ax-mulcl 7040  ax-mulrcl 7041  ax-addcom 7042  ax-mulcom 7043  ax-addass 7044  ax-mulass 7045  ax-distr 7046  ax-i2m1 7047  ax-1rid 7049  ax-0id 7050  ax-rnegex 7051  ax-precex 7052  ax-cnre 7053  ax-pre-ltirr 7054  ax-pre-ltwlin 7055  ax-pre-lttrn 7056  ax-pre-apti 7057  ax-pre-ltadd 7058  ax-pre-mulgt0 7059  ax-pre-mulext 7060 This theorem depends on definitions:  df-bi 114  df-dc 754  df-3or 897  df-3an 898  df-tru 1262  df-fal 1265  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ne 2221  df-nel 2315  df-ral 2328  df-rex 2329  df-reu 2330  df-rmo 2331  df-rab 2332  df-v 2576  df-sbc 2788  df-csb 2881  df-dif 2948  df-un 2950  df-in 2952  df-ss 2959  df-nul 3253  df-pw 3389  df-sn 3409  df-pr 3410  df-op 3412  df-uni 3609  df-int 3644  df-iun 3687  df-br 3793  df-opab 3847  df-mpt 3848  df-tr 3883  df-eprel 4054  df-id 4058  df-po 4061  df-iso 4062  df-iord 4131  df-on 4133  df-suc 4136  df-iom 4342  df-xp 4379  df-rel 4380  df-cnv 4381  df-co 4382  df-dm 4383  df-rn 4384  df-res 4385  df-ima 4386  df-iota 4895  df-fun 4932  df-fn 4933  df-f 4934  df-f1 4935  df-fo 4936  df-f1o 4937  df-fv 4938  df-riota 5496  df-ov 5543  df-oprab 5544  df-mpt2 5545  df-1st 5795  df-2nd 5796  df-recs 5951  df-irdg 5988  df-1o 6032  df-2o 6033  df-oadd 6036  df-omul 6037  df-er 6137  df-ec 6139  df-qs 6143  df-ni 6460  df-pli 6461  df-mi 6462  df-lti 6463  df-plpq 6500  df-mpq 6501  df-enq 6503  df-nqqs 6504  df-plqqs 6505  df-mqqs 6506  df-1nqqs 6507  df-rq 6508  df-ltnqqs 6509  df-enq0 6580  df-nq0 6581  df-0nq0 6582  df-plq0 6583  df-mq0 6584  df-inp 6622  df-i1p 6623  df-iplp 6624  df-iltp 6626  df-enr 6869  df-nr 6870  df-ltr 6873  df-0r 6874  df-1r 6875  df-0 6954  df-1 6955  df-r 6957  df-lt 6960  df-pnf 7121  df-mnf 7122  df-xr 7123  df-ltxr 7124  df-le 7125  df-sub 7247  df-neg 7248  df-reap 7640  df-ap 7647  df-div 7726 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator