ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  recriota GIF version

Theorem recriota 7195
Description: Two ways to express the reciprocal of a natural number. (Contributed by Jim Kingdon, 11-Jul-2021.)
Assertion
Ref Expression
recriota (𝑁N → (𝑟 ∈ ℝ (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑁, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ · 𝑟) = 1) = ⟨[⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑁, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑁, 1𝑜⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩)
Distinct variable group:   𝑁,𝑙,𝑟,𝑢

Proof of Theorem recriota
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 pitore 7157 . . 3 (𝑁N → ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑁, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ ℝ)
2 pitoregt0 7156 . . 3 (𝑁N → 0 < ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑁, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩)
3 axprecex 7185 . . 3 ((⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑁, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ ℝ ∧ 0 < ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑁, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) → ∃𝑦 ∈ ℝ (0 < 𝑦 ∧ (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑁, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ · 𝑦) = 1))
41, 2, 3syl2anc 403 . 2 (𝑁N → ∃𝑦 ∈ ℝ (0 < 𝑦 ∧ (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑁, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ · 𝑦) = 1))
5 simprrr 507 . . . 4 ((𝑁N ∧ (𝑦 ∈ ℝ ∧ (0 < 𝑦 ∧ (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑁, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ · 𝑦) = 1))) → (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑁, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ · 𝑦) = 1)
6 simprl 498 . . . . 5 ((𝑁N ∧ (𝑦 ∈ ℝ ∧ (0 < 𝑦 ∧ (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑁, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ · 𝑦) = 1))) → 𝑦 ∈ ℝ)
71adantr 270 . . . . . 6 ((𝑁N ∧ (𝑦 ∈ ℝ ∧ (0 < 𝑦 ∧ (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑁, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ · 𝑦) = 1))) → ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑁, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ ℝ)
82adantr 270 . . . . . 6 ((𝑁N ∧ (𝑦 ∈ ℝ ∧ (0 < 𝑦 ∧ (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑁, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ · 𝑦) = 1))) → 0 < ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑁, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩)
9 rereceu 7194 . . . . . 6 ((⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑁, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ ℝ ∧ 0 < ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑁, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) → ∃!𝑟 ∈ ℝ (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑁, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ · 𝑟) = 1)
107, 8, 9syl2anc 403 . . . . 5 ((𝑁N ∧ (𝑦 ∈ ℝ ∧ (0 < 𝑦 ∧ (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑁, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ · 𝑦) = 1))) → ∃!𝑟 ∈ ℝ (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑁, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ · 𝑟) = 1)
11 oveq2 5573 . . . . . . 7 (𝑟 = 𝑦 → (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑁, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ · 𝑟) = (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑁, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ · 𝑦))
1211eqeq1d 2091 . . . . . 6 (𝑟 = 𝑦 → ((⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑁, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ · 𝑟) = 1 ↔ (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑁, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ · 𝑦) = 1))
1312riota2 5543 . . . . 5 ((𝑦 ∈ ℝ ∧ ∃!𝑟 ∈ ℝ (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑁, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ · 𝑟) = 1) → ((⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑁, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ · 𝑦) = 1 ↔ (𝑟 ∈ ℝ (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑁, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ · 𝑟) = 1) = 𝑦))
146, 10, 13syl2anc 403 . . . 4 ((𝑁N ∧ (𝑦 ∈ ℝ ∧ (0 < 𝑦 ∧ (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑁, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ · 𝑦) = 1))) → ((⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑁, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ · 𝑦) = 1 ↔ (𝑟 ∈ ℝ (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑁, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ · 𝑟) = 1) = 𝑦))
155, 14mpbid 145 . . 3 ((𝑁N ∧ (𝑦 ∈ ℝ ∧ (0 < 𝑦 ∧ (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑁, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ · 𝑦) = 1))) → (𝑟 ∈ ℝ (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑁, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ · 𝑟) = 1) = 𝑦)
165oveq2d 5581 . . . 4 ((𝑁N ∧ (𝑦 ∈ ℝ ∧ (0 < 𝑦 ∧ (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑁, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ · 𝑦) = 1))) → (⟨[⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑁, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑁, 1𝑜⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ · (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑁, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ · 𝑦)) = (⟨[⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑁, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑁, 1𝑜⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ · 1))
17 axresscn 7167 . . . . . . . . . 10 ℝ ⊆ ℂ
1817, 7sseldi 3007 . . . . . . . . 9 ((𝑁N ∧ (𝑦 ∈ ℝ ∧ (0 < 𝑦 ∧ (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑁, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ · 𝑦) = 1))) → ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑁, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ ℂ)
19 recnnre 7158 . . . . . . . . . . 11 (𝑁N → ⟨[⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑁, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑁, 1𝑜⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ ℝ)
2019adantr 270 . . . . . . . . . 10 ((𝑁N ∧ (𝑦 ∈ ℝ ∧ (0 < 𝑦 ∧ (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑁, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ · 𝑦) = 1))) → ⟨[⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑁, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑁, 1𝑜⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ ℝ)
2117, 20sseldi 3007 . . . . . . . . 9 ((𝑁N ∧ (𝑦 ∈ ℝ ∧ (0 < 𝑦 ∧ (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑁, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ · 𝑦) = 1))) → ⟨[⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑁, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑁, 1𝑜⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ ℂ)
22 axmulcom 7176 . . . . . . . . 9 ((⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑁, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ ℂ ∧ ⟨[⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑁, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑁, 1𝑜⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ ℂ) → (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑁, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ · ⟨[⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑁, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑁, 1𝑜⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) = (⟨[⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑁, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑁, 1𝑜⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ · ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑁, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩))
2318, 21, 22syl2anc 403 . . . . . . . 8 ((𝑁N ∧ (𝑦 ∈ ℝ ∧ (0 < 𝑦 ∧ (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑁, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ · 𝑦) = 1))) → (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑁, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ · ⟨[⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑁, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑁, 1𝑜⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) = (⟨[⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑁, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑁, 1𝑜⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ · ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑁, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩))
24 recidpirq 7165 . . . . . . . . 9 (𝑁N → (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑁, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ · ⟨[⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑁, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑁, 1𝑜⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) = 1)
2524adantr 270 . . . . . . . 8 ((𝑁N ∧ (𝑦 ∈ ℝ ∧ (0 < 𝑦 ∧ (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑁, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ · 𝑦) = 1))) → (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑁, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ · ⟨[⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑁, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑁, 1𝑜⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) = 1)
2623, 25eqtr3d 2117 . . . . . . 7 ((𝑁N ∧ (𝑦 ∈ ℝ ∧ (0 < 𝑦 ∧ (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑁, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ · 𝑦) = 1))) → (⟨[⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑁, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑁, 1𝑜⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ · ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑁, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) = 1)
2726oveq1d 5580 . . . . . 6 ((𝑁N ∧ (𝑦 ∈ ℝ ∧ (0 < 𝑦 ∧ (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑁, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ · 𝑦) = 1))) → ((⟨[⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑁, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑁, 1𝑜⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ · ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑁, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) · 𝑦) = (1 · 𝑦))
2817, 6sseldi 3007 . . . . . . 7 ((𝑁N ∧ (𝑦 ∈ ℝ ∧ (0 < 𝑦 ∧ (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑁, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ · 𝑦) = 1))) → 𝑦 ∈ ℂ)
29 axmulass 7178 . . . . . . 7 ((⟨[⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑁, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑁, 1𝑜⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ ℂ ∧ ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑁, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((⟨[⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑁, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑁, 1𝑜⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ · ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑁, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) · 𝑦) = (⟨[⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑁, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑁, 1𝑜⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ · (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑁, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ · 𝑦)))
3021, 18, 28, 29syl3anc 1170 . . . . . 6 ((𝑁N ∧ (𝑦 ∈ ℝ ∧ (0 < 𝑦 ∧ (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑁, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ · 𝑦) = 1))) → ((⟨[⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑁, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑁, 1𝑜⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ · ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑁, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) · 𝑦) = (⟨[⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑁, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑁, 1𝑜⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ · (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑁, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ · 𝑦)))
31 ax1cn 7168 . . . . . . 7 1 ∈ ℂ
32 axmulcom 7176 . . . . . . 7 ((1 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (1 · 𝑦) = (𝑦 · 1))
3331, 28, 32sylancr 405 . . . . . 6 ((𝑁N ∧ (𝑦 ∈ ℝ ∧ (0 < 𝑦 ∧ (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑁, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ · 𝑦) = 1))) → (1 · 𝑦) = (𝑦 · 1))
3427, 30, 333eqtr3d 2123 . . . . 5 ((𝑁N ∧ (𝑦 ∈ ℝ ∧ (0 < 𝑦 ∧ (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑁, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ · 𝑦) = 1))) → (⟨[⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑁, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑁, 1𝑜⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ · (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑁, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ · 𝑦)) = (𝑦 · 1))
35 ax1rid 7182 . . . . . 6 (𝑦 ∈ ℝ → (𝑦 · 1) = 𝑦)
366, 35syl 14 . . . . 5 ((𝑁N ∧ (𝑦 ∈ ℝ ∧ (0 < 𝑦 ∧ (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑁, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ · 𝑦) = 1))) → (𝑦 · 1) = 𝑦)
3734, 36eqtrd 2115 . . . 4 ((𝑁N ∧ (𝑦 ∈ ℝ ∧ (0 < 𝑦 ∧ (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑁, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ · 𝑦) = 1))) → (⟨[⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑁, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑁, 1𝑜⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ · (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑁, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ · 𝑦)) = 𝑦)
38 ax1rid 7182 . . . . 5 (⟨[⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑁, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑁, 1𝑜⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ ℝ → (⟨[⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑁, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑁, 1𝑜⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ · 1) = ⟨[⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑁, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑁, 1𝑜⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩)
3920, 38syl 14 . . . 4 ((𝑁N ∧ (𝑦 ∈ ℝ ∧ (0 < 𝑦 ∧ (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑁, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ · 𝑦) = 1))) → (⟨[⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑁, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑁, 1𝑜⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ · 1) = ⟨[⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑁, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑁, 1𝑜⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩)
4016, 37, 393eqtr3d 2123 . . 3 ((𝑁N ∧ (𝑦 ∈ ℝ ∧ (0 < 𝑦 ∧ (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑁, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ · 𝑦) = 1))) → 𝑦 = ⟨[⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑁, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑁, 1𝑜⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩)
4115, 40eqtrd 2115 . 2 ((𝑁N ∧ (𝑦 ∈ ℝ ∧ (0 < 𝑦 ∧ (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑁, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ · 𝑦) = 1))) → (𝑟 ∈ ℝ (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑁, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ · 𝑟) = 1) = ⟨[⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑁, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑁, 1𝑜⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩)
424, 41rexlimddv 2487 1 (𝑁N → (𝑟 ∈ ℝ (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑁, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ · 𝑟) = 1) = ⟨[⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑁, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑁, 1𝑜⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103   = wceq 1285  wcel 1434  {cab 2069  wrex 2354  ∃!wreu 2355  cop 3420   class class class wbr 3806  cfv 4953  crio 5520  (class class class)co 5565  1𝑜c1o 6080  [cec 6193  Ncnpi 6601   ~Q ceq 6608  *Qcrq 6613   <Q cltq 6614  1Pc1p 6621   +P cpp 6622   ~R cer 6625  0Rc0r 6627  cc 7118  cr 7119  0cc0 7120  1c1 7121   < cltrr 7124   · cmul 7125
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-coll 3914  ax-sep 3917  ax-nul 3925  ax-pow 3969  ax-pr 3993  ax-un 4217  ax-setind 4309  ax-iinf 4358
This theorem depends on definitions:  df-bi 115  df-dc 777  df-3or 921  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ne 2250  df-ral 2358  df-rex 2359  df-reu 2360  df-rmo 2361  df-rab 2362  df-v 2613  df-sbc 2826  df-csb 2919  df-dif 2985  df-un 2987  df-in 2989  df-ss 2996  df-nul 3269  df-pw 3403  df-sn 3423  df-pr 3424  df-op 3426  df-uni 3623  df-int 3658  df-iun 3701  df-br 3807  df-opab 3861  df-mpt 3862  df-tr 3897  df-eprel 4073  df-id 4077  df-po 4080  df-iso 4081  df-iord 4150  df-on 4152  df-suc 4155  df-iom 4361  df-xp 4398  df-rel 4399  df-cnv 4400  df-co 4401  df-dm 4402  df-rn 4403  df-res 4404  df-ima 4405  df-iota 4918  df-fun 4955  df-fn 4956  df-f 4957  df-f1 4958  df-fo 4959  df-f1o 4960  df-fv 4961  df-riota 5521  df-ov 5568  df-oprab 5569  df-mpt2 5570  df-1st 5820  df-2nd 5821  df-recs 5976  df-irdg 6041  df-1o 6087  df-2o 6088  df-oadd 6091  df-omul 6092  df-er 6195  df-ec 6197  df-qs 6201  df-ni 6633  df-pli 6634  df-mi 6635  df-lti 6636  df-plpq 6673  df-mpq 6674  df-enq 6676  df-nqqs 6677  df-plqqs 6678  df-mqqs 6679  df-1nqqs 6680  df-rq 6681  df-ltnqqs 6682  df-enq0 6753  df-nq0 6754  df-0nq0 6755  df-plq0 6756  df-mq0 6757  df-inp 6795  df-i1p 6796  df-iplp 6797  df-imp 6798  df-iltp 6799  df-enr 7042  df-nr 7043  df-plr 7044  df-mr 7045  df-ltr 7046  df-0r 7047  df-1r 7048  df-m1r 7049  df-c 7126  df-0 7127  df-1 7128  df-r 7130  df-mul 7132  df-lt 7133
This theorem is referenced by:  axcaucvglemcau  7203
  Copyright terms: Public domain W3C validator