ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  relcoi1 GIF version

Theorem relcoi1 4876
Description: Composition with the identity relation restricted to a relation's field. (Contributed by FL, 8-May-2011.)
Assertion
Ref Expression
relcoi1 (Rel 𝑅 → (𝑅 ∘ ( I ↾ 𝑅)) = 𝑅)

Proof of Theorem relcoi1
StepHypRef Expression
1 relfld 4873 . . 3 (Rel 𝑅 𝑅 = (dom 𝑅 ∪ ran 𝑅))
2 resundi 4652 . . . . 5 ( I ↾ (dom 𝑅 ∪ ran 𝑅)) = (( I ↾ dom 𝑅) ∪ ( I ↾ ran 𝑅))
3 coeq2 4521 . . . . 5 (( I ↾ (dom 𝑅 ∪ ran 𝑅)) = (( I ↾ dom 𝑅) ∪ ( I ↾ ran 𝑅)) → (𝑅 ∘ ( I ↾ (dom 𝑅 ∪ ran 𝑅))) = (𝑅 ∘ (( I ↾ dom 𝑅) ∪ ( I ↾ ran 𝑅))))
4 coundi 4849 . . . . . . 7 (𝑅 ∘ (( I ↾ dom 𝑅) ∪ ( I ↾ ran 𝑅))) = ((𝑅 ∘ ( I ↾ dom 𝑅)) ∪ (𝑅 ∘ ( I ↾ ran 𝑅)))
5 resco 4852 . . . . . . . 8 ((𝑅 ∘ I ) ↾ dom 𝑅) = (𝑅 ∘ ( I ↾ dom 𝑅))
6 coi1 4863 . . . . . . . . 9 (Rel 𝑅 → (𝑅 ∘ I ) = 𝑅)
7 reseq1 4633 . . . . . . . . . 10 ((𝑅 ∘ I ) = 𝑅 → ((𝑅 ∘ I ) ↾ dom 𝑅) = (𝑅 ↾ dom 𝑅))
8 resdm 4676 . . . . . . . . . . 11 (Rel 𝑅 → (𝑅 ↾ dom 𝑅) = 𝑅)
9 eqtr 2073 . . . . . . . . . . . . . 14 ((((𝑅 ∘ I ) ↾ dom 𝑅) = (𝑅 ↾ dom 𝑅) ∧ (𝑅 ↾ dom 𝑅) = 𝑅) → ((𝑅 ∘ I ) ↾ dom 𝑅) = 𝑅)
10 eqtr 2073 . . . . . . . . . . . . . . . . . 18 (((𝑅 ∘ ( I ↾ dom 𝑅)) = ((𝑅 ∘ I ) ↾ dom 𝑅) ∧ ((𝑅 ∘ I ) ↾ dom 𝑅) = 𝑅) → (𝑅 ∘ ( I ↾ dom 𝑅)) = 𝑅)
11 resco 4852 . . . . . . . . . . . . . . . . . . 19 ((𝑅 ∘ I ) ↾ ran 𝑅) = (𝑅 ∘ ( I ↾ ran 𝑅))
12 uneq1 3117 . . . . . . . . . . . . . . . . . . 19 ((𝑅 ∘ ( I ↾ dom 𝑅)) = 𝑅 → ((𝑅 ∘ ( I ↾ dom 𝑅)) ∪ (𝑅 ∘ ( I ↾ ran 𝑅))) = (𝑅 ∪ (𝑅 ∘ ( I ↾ ran 𝑅))))
13 reseq1 4633 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑅 ∘ I ) = 𝑅 → ((𝑅 ∘ I ) ↾ ran 𝑅) = (𝑅 ↾ ran 𝑅))
14 eqtr 2073 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑅 ∘ ( I ↾ ran 𝑅)) = ((𝑅 ∘ I ) ↾ ran 𝑅) ∧ ((𝑅 ∘ I ) ↾ ran 𝑅) = (𝑅 ↾ ran 𝑅)) → (𝑅 ∘ ( I ↾ ran 𝑅)) = (𝑅 ↾ ran 𝑅))
1514uneq2d 3124 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑅 ∘ ( I ↾ ran 𝑅)) = ((𝑅 ∘ I ) ↾ ran 𝑅) ∧ ((𝑅 ∘ I ) ↾ ran 𝑅) = (𝑅 ↾ ran 𝑅)) → (𝑅 ∪ (𝑅 ∘ ( I ↾ ran 𝑅))) = (𝑅 ∪ (𝑅 ↾ ran 𝑅)))
16 eqtr 2073 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝑅 ∘ ( I ↾ dom 𝑅)) ∪ (𝑅 ∘ ( I ↾ ran 𝑅))) = (𝑅 ∪ (𝑅 ∘ ( I ↾ ran 𝑅))) ∧ (𝑅 ∪ (𝑅 ∘ ( I ↾ ran 𝑅))) = (𝑅 ∪ (𝑅 ↾ ran 𝑅))) → ((𝑅 ∘ ( I ↾ dom 𝑅)) ∪ (𝑅 ∘ ( I ↾ ran 𝑅))) = (𝑅 ∪ (𝑅 ↾ ran 𝑅)))
17 resss 4662 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑅 ↾ ran 𝑅) ⊆ 𝑅
18 ssequn2 3143 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑅 ↾ ran 𝑅) ⊆ 𝑅 ↔ (𝑅 ∪ (𝑅 ↾ ran 𝑅)) = 𝑅)
1917, 18mpbi 137 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑅 ∪ (𝑅 ↾ ran 𝑅)) = 𝑅
206, 19syl6reqr 2107 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (Rel 𝑅 → (𝑅 ∪ (𝑅 ↾ ran 𝑅)) = (𝑅 ∘ I ))
21 eqeq1 2062 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝑅 ∘ ( I ↾ dom 𝑅)) ∪ (𝑅 ∘ ( I ↾ ran 𝑅))) = (𝑅 ∪ (𝑅 ↾ ran 𝑅)) → (((𝑅 ∘ ( I ↾ dom 𝑅)) ∪ (𝑅 ∘ ( I ↾ ran 𝑅))) = (𝑅 ∘ I ) ↔ (𝑅 ∪ (𝑅 ↾ ran 𝑅)) = (𝑅 ∘ I )))
2220, 21syl5ibr 149 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝑅 ∘ ( I ↾ dom 𝑅)) ∪ (𝑅 ∘ ( I ↾ ran 𝑅))) = (𝑅 ∪ (𝑅 ↾ ran 𝑅)) → (Rel 𝑅 → ((𝑅 ∘ ( I ↾ dom 𝑅)) ∪ (𝑅 ∘ ( I ↾ ran 𝑅))) = (𝑅 ∘ I )))
2316, 22syl 14 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝑅 ∘ ( I ↾ dom 𝑅)) ∪ (𝑅 ∘ ( I ↾ ran 𝑅))) = (𝑅 ∪ (𝑅 ∘ ( I ↾ ran 𝑅))) ∧ (𝑅 ∪ (𝑅 ∘ ( I ↾ ran 𝑅))) = (𝑅 ∪ (𝑅 ↾ ran 𝑅))) → (Rel 𝑅 → ((𝑅 ∘ ( I ↾ dom 𝑅)) ∪ (𝑅 ∘ ( I ↾ ran 𝑅))) = (𝑅 ∘ I )))
2423ex 112 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑅 ∘ ( I ↾ dom 𝑅)) ∪ (𝑅 ∘ ( I ↾ ran 𝑅))) = (𝑅 ∪ (𝑅 ∘ ( I ↾ ran 𝑅))) → ((𝑅 ∪ (𝑅 ∘ ( I ↾ ran 𝑅))) = (𝑅 ∪ (𝑅 ↾ ran 𝑅)) → (Rel 𝑅 → ((𝑅 ∘ ( I ↾ dom 𝑅)) ∪ (𝑅 ∘ ( I ↾ ran 𝑅))) = (𝑅 ∘ I ))))
2524com3l 79 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑅 ∪ (𝑅 ∘ ( I ↾ ran 𝑅))) = (𝑅 ∪ (𝑅 ↾ ran 𝑅)) → (Rel 𝑅 → (((𝑅 ∘ ( I ↾ dom 𝑅)) ∪ (𝑅 ∘ ( I ↾ ran 𝑅))) = (𝑅 ∪ (𝑅 ∘ ( I ↾ ran 𝑅))) → ((𝑅 ∘ ( I ↾ dom 𝑅)) ∪ (𝑅 ∘ ( I ↾ ran 𝑅))) = (𝑅 ∘ I ))))
2615, 25syl 14 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑅 ∘ ( I ↾ ran 𝑅)) = ((𝑅 ∘ I ) ↾ ran 𝑅) ∧ ((𝑅 ∘ I ) ↾ ran 𝑅) = (𝑅 ↾ ran 𝑅)) → (Rel 𝑅 → (((𝑅 ∘ ( I ↾ dom 𝑅)) ∪ (𝑅 ∘ ( I ↾ ran 𝑅))) = (𝑅 ∪ (𝑅 ∘ ( I ↾ ran 𝑅))) → ((𝑅 ∘ ( I ↾ dom 𝑅)) ∪ (𝑅 ∘ ( I ↾ ran 𝑅))) = (𝑅 ∘ I ))))
2726ex 112 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑅 ∘ ( I ↾ ran 𝑅)) = ((𝑅 ∘ I ) ↾ ran 𝑅) → (((𝑅 ∘ I ) ↾ ran 𝑅) = (𝑅 ↾ ran 𝑅) → (Rel 𝑅 → (((𝑅 ∘ ( I ↾ dom 𝑅)) ∪ (𝑅 ∘ ( I ↾ ran 𝑅))) = (𝑅 ∪ (𝑅 ∘ ( I ↾ ran 𝑅))) → ((𝑅 ∘ ( I ↾ dom 𝑅)) ∪ (𝑅 ∘ ( I ↾ ran 𝑅))) = (𝑅 ∘ I )))))
2827eqcoms 2059 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑅 ∘ I ) ↾ ran 𝑅) = (𝑅 ∘ ( I ↾ ran 𝑅)) → (((𝑅 ∘ I ) ↾ ran 𝑅) = (𝑅 ↾ ran 𝑅) → (Rel 𝑅 → (((𝑅 ∘ ( I ↾ dom 𝑅)) ∪ (𝑅 ∘ ( I ↾ ran 𝑅))) = (𝑅 ∪ (𝑅 ∘ ( I ↾ ran 𝑅))) → ((𝑅 ∘ ( I ↾ dom 𝑅)) ∪ (𝑅 ∘ ( I ↾ ran 𝑅))) = (𝑅 ∘ I )))))
2928com3l 79 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑅 ∘ I ) ↾ ran 𝑅) = (𝑅 ↾ ran 𝑅) → (Rel 𝑅 → (((𝑅 ∘ I ) ↾ ran 𝑅) = (𝑅 ∘ ( I ↾ ran 𝑅)) → (((𝑅 ∘ ( I ↾ dom 𝑅)) ∪ (𝑅 ∘ ( I ↾ ran 𝑅))) = (𝑅 ∪ (𝑅 ∘ ( I ↾ ran 𝑅))) → ((𝑅 ∘ ( I ↾ dom 𝑅)) ∪ (𝑅 ∘ ( I ↾ ran 𝑅))) = (𝑅 ∘ I )))))
3013, 29syl 14 . . . . . . . . . . . . . . . . . . . . 21 ((𝑅 ∘ I ) = 𝑅 → (Rel 𝑅 → (((𝑅 ∘ I ) ↾ ran 𝑅) = (𝑅 ∘ ( I ↾ ran 𝑅)) → (((𝑅 ∘ ( I ↾ dom 𝑅)) ∪ (𝑅 ∘ ( I ↾ ran 𝑅))) = (𝑅 ∪ (𝑅 ∘ ( I ↾ ran 𝑅))) → ((𝑅 ∘ ( I ↾ dom 𝑅)) ∪ (𝑅 ∘ ( I ↾ ran 𝑅))) = (𝑅 ∘ I )))))
316, 30mpcom 36 . . . . . . . . . . . . . . . . . . . 20 (Rel 𝑅 → (((𝑅 ∘ I ) ↾ ran 𝑅) = (𝑅 ∘ ( I ↾ ran 𝑅)) → (((𝑅 ∘ ( I ↾ dom 𝑅)) ∪ (𝑅 ∘ ( I ↾ ran 𝑅))) = (𝑅 ∪ (𝑅 ∘ ( I ↾ ran 𝑅))) → ((𝑅 ∘ ( I ↾ dom 𝑅)) ∪ (𝑅 ∘ ( I ↾ ran 𝑅))) = (𝑅 ∘ I ))))
3231com3l 79 . . . . . . . . . . . . . . . . . . 19 (((𝑅 ∘ I ) ↾ ran 𝑅) = (𝑅 ∘ ( I ↾ ran 𝑅)) → (((𝑅 ∘ ( I ↾ dom 𝑅)) ∪ (𝑅 ∘ ( I ↾ ran 𝑅))) = (𝑅 ∪ (𝑅 ∘ ( I ↾ ran 𝑅))) → (Rel 𝑅 → ((𝑅 ∘ ( I ↾ dom 𝑅)) ∪ (𝑅 ∘ ( I ↾ ran 𝑅))) = (𝑅 ∘ I ))))
3311, 12, 32mpsyl 63 . . . . . . . . . . . . . . . . . 18 ((𝑅 ∘ ( I ↾ dom 𝑅)) = 𝑅 → (Rel 𝑅 → ((𝑅 ∘ ( I ↾ dom 𝑅)) ∪ (𝑅 ∘ ( I ↾ ran 𝑅))) = (𝑅 ∘ I )))
3410, 33syl 14 . . . . . . . . . . . . . . . . 17 (((𝑅 ∘ ( I ↾ dom 𝑅)) = ((𝑅 ∘ I ) ↾ dom 𝑅) ∧ ((𝑅 ∘ I ) ↾ dom 𝑅) = 𝑅) → (Rel 𝑅 → ((𝑅 ∘ ( I ↾ dom 𝑅)) ∪ (𝑅 ∘ ( I ↾ ran 𝑅))) = (𝑅 ∘ I )))
3534ex 112 . . . . . . . . . . . . . . . 16 ((𝑅 ∘ ( I ↾ dom 𝑅)) = ((𝑅 ∘ I ) ↾ dom 𝑅) → (((𝑅 ∘ I ) ↾ dom 𝑅) = 𝑅 → (Rel 𝑅 → ((𝑅 ∘ ( I ↾ dom 𝑅)) ∪ (𝑅 ∘ ( I ↾ ran 𝑅))) = (𝑅 ∘ I ))))
3635eqcoms 2059 . . . . . . . . . . . . . . 15 (((𝑅 ∘ I ) ↾ dom 𝑅) = (𝑅 ∘ ( I ↾ dom 𝑅)) → (((𝑅 ∘ I ) ↾ dom 𝑅) = 𝑅 → (Rel 𝑅 → ((𝑅 ∘ ( I ↾ dom 𝑅)) ∪ (𝑅 ∘ ( I ↾ ran 𝑅))) = (𝑅 ∘ I ))))
3736com3l 79 . . . . . . . . . . . . . 14 (((𝑅 ∘ I ) ↾ dom 𝑅) = 𝑅 → (Rel 𝑅 → (((𝑅 ∘ I ) ↾ dom 𝑅) = (𝑅 ∘ ( I ↾ dom 𝑅)) → ((𝑅 ∘ ( I ↾ dom 𝑅)) ∪ (𝑅 ∘ ( I ↾ ran 𝑅))) = (𝑅 ∘ I ))))
389, 37syl 14 . . . . . . . . . . . . 13 ((((𝑅 ∘ I ) ↾ dom 𝑅) = (𝑅 ↾ dom 𝑅) ∧ (𝑅 ↾ dom 𝑅) = 𝑅) → (Rel 𝑅 → (((𝑅 ∘ I ) ↾ dom 𝑅) = (𝑅 ∘ ( I ↾ dom 𝑅)) → ((𝑅 ∘ ( I ↾ dom 𝑅)) ∪ (𝑅 ∘ ( I ↾ ran 𝑅))) = (𝑅 ∘ I ))))
3938ex 112 . . . . . . . . . . . 12 (((𝑅 ∘ I ) ↾ dom 𝑅) = (𝑅 ↾ dom 𝑅) → ((𝑅 ↾ dom 𝑅) = 𝑅 → (Rel 𝑅 → (((𝑅 ∘ I ) ↾ dom 𝑅) = (𝑅 ∘ ( I ↾ dom 𝑅)) → ((𝑅 ∘ ( I ↾ dom 𝑅)) ∪ (𝑅 ∘ ( I ↾ ran 𝑅))) = (𝑅 ∘ I )))))
4039com3l 79 . . . . . . . . . . 11 ((𝑅 ↾ dom 𝑅) = 𝑅 → (Rel 𝑅 → (((𝑅 ∘ I ) ↾ dom 𝑅) = (𝑅 ↾ dom 𝑅) → (((𝑅 ∘ I ) ↾ dom 𝑅) = (𝑅 ∘ ( I ↾ dom 𝑅)) → ((𝑅 ∘ ( I ↾ dom 𝑅)) ∪ (𝑅 ∘ ( I ↾ ran 𝑅))) = (𝑅 ∘ I )))))
418, 40mpcom 36 . . . . . . . . . 10 (Rel 𝑅 → (((𝑅 ∘ I ) ↾ dom 𝑅) = (𝑅 ↾ dom 𝑅) → (((𝑅 ∘ I ) ↾ dom 𝑅) = (𝑅 ∘ ( I ↾ dom 𝑅)) → ((𝑅 ∘ ( I ↾ dom 𝑅)) ∪ (𝑅 ∘ ( I ↾ ran 𝑅))) = (𝑅 ∘ I ))))
427, 41syl5com 29 . . . . . . . . 9 ((𝑅 ∘ I ) = 𝑅 → (Rel 𝑅 → (((𝑅 ∘ I ) ↾ dom 𝑅) = (𝑅 ∘ ( I ↾ dom 𝑅)) → ((𝑅 ∘ ( I ↾ dom 𝑅)) ∪ (𝑅 ∘ ( I ↾ ran 𝑅))) = (𝑅 ∘ I ))))
436, 42mpcom 36 . . . . . . . 8 (Rel 𝑅 → (((𝑅 ∘ I ) ↾ dom 𝑅) = (𝑅 ∘ ( I ↾ dom 𝑅)) → ((𝑅 ∘ ( I ↾ dom 𝑅)) ∪ (𝑅 ∘ ( I ↾ ran 𝑅))) = (𝑅 ∘ I )))
445, 43mpi 15 . . . . . . 7 (Rel 𝑅 → ((𝑅 ∘ ( I ↾ dom 𝑅)) ∪ (𝑅 ∘ ( I ↾ ran 𝑅))) = (𝑅 ∘ I ))
454, 44syl5eq 2100 . . . . . 6 (Rel 𝑅 → (𝑅 ∘ (( I ↾ dom 𝑅) ∪ ( I ↾ ran 𝑅))) = (𝑅 ∘ I ))
46 eqeq1 2062 . . . . . 6 ((𝑅 ∘ ( I ↾ (dom 𝑅 ∪ ran 𝑅))) = (𝑅 ∘ (( I ↾ dom 𝑅) ∪ ( I ↾ ran 𝑅))) → ((𝑅 ∘ ( I ↾ (dom 𝑅 ∪ ran 𝑅))) = (𝑅 ∘ I ) ↔ (𝑅 ∘ (( I ↾ dom 𝑅) ∪ ( I ↾ ran 𝑅))) = (𝑅 ∘ I )))
4745, 46syl5ibr 149 . . . . 5 ((𝑅 ∘ ( I ↾ (dom 𝑅 ∪ ran 𝑅))) = (𝑅 ∘ (( I ↾ dom 𝑅) ∪ ( I ↾ ran 𝑅))) → (Rel 𝑅 → (𝑅 ∘ ( I ↾ (dom 𝑅 ∪ ran 𝑅))) = (𝑅 ∘ I )))
482, 3, 47mp2b 8 . . . 4 (Rel 𝑅 → (𝑅 ∘ ( I ↾ (dom 𝑅 ∪ ran 𝑅))) = (𝑅 ∘ I ))
49 reseq2 4634 . . . . . 6 ( 𝑅 = (dom 𝑅 ∪ ran 𝑅) → ( I ↾ 𝑅) = ( I ↾ (dom 𝑅 ∪ ran 𝑅)))
5049coeq2d 4525 . . . . 5 ( 𝑅 = (dom 𝑅 ∪ ran 𝑅) → (𝑅 ∘ ( I ↾ 𝑅)) = (𝑅 ∘ ( I ↾ (dom 𝑅 ∪ ran 𝑅))))
5150eqeq1d 2064 . . . 4 ( 𝑅 = (dom 𝑅 ∪ ran 𝑅) → ((𝑅 ∘ ( I ↾ 𝑅)) = (𝑅 ∘ I ) ↔ (𝑅 ∘ ( I ↾ (dom 𝑅 ∪ ran 𝑅))) = (𝑅 ∘ I )))
5248, 51syl5ibr 149 . . 3 ( 𝑅 = (dom 𝑅 ∪ ran 𝑅) → (Rel 𝑅 → (𝑅 ∘ ( I ↾ 𝑅)) = (𝑅 ∘ I )))
531, 52mpcom 36 . 2 (Rel 𝑅 → (𝑅 ∘ ( I ↾ 𝑅)) = (𝑅 ∘ I ))
5453, 6eqtrd 2088 1 (Rel 𝑅 → (𝑅 ∘ ( I ↾ 𝑅)) = 𝑅)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 101   = wceq 1259  cun 2942  wss 2944   cuni 3607   I cid 4052  dom cdm 4372  ran crn 4373  cres 4374  ccom 4376  Rel wrel 4377
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-sep 3902  ax-pow 3954  ax-pr 3971
This theorem depends on definitions:  df-bi 114  df-3an 898  df-tru 1262  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ral 2328  df-rex 2329  df-v 2576  df-un 2949  df-in 2951  df-ss 2958  df-pw 3388  df-sn 3408  df-pr 3409  df-op 3411  df-uni 3608  df-br 3792  df-opab 3846  df-id 4057  df-xp 4378  df-rel 4379  df-cnv 4380  df-co 4381  df-dm 4382  df-rn 4383  df-res 4384
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator