ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reldmtpos GIF version

Theorem reldmtpos 5898
Description: Necessary and sufficient condition for dom tpos 𝐹 to be a relation. (Contributed by Mario Carneiro, 10-Sep-2015.)
Assertion
Ref Expression
reldmtpos (Rel dom tpos 𝐹 ↔ ¬ ∅ ∈ dom 𝐹)

Proof of Theorem reldmtpos
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0ex 3911 . . . . 5 ∅ ∈ V
21eldm 4559 . . . 4 (∅ ∈ dom 𝐹 ↔ ∃𝑦𝐹𝑦)
3 vex 2577 . . . . . . 7 𝑦 ∈ V
4 brtpos0 5897 . . . . . . 7 (𝑦 ∈ V → (∅tpos 𝐹𝑦 ↔ ∅𝐹𝑦))
53, 4ax-mp 7 . . . . . 6 (∅tpos 𝐹𝑦 ↔ ∅𝐹𝑦)
6 0nelxp 4399 . . . . . . . 8 ¬ ∅ ∈ (V × V)
7 df-rel 4379 . . . . . . . . 9 (Rel dom tpos 𝐹 ↔ dom tpos 𝐹 ⊆ (V × V))
8 ssel 2966 . . . . . . . . 9 (dom tpos 𝐹 ⊆ (V × V) → (∅ ∈ dom tpos 𝐹 → ∅ ∈ (V × V)))
97, 8sylbi 118 . . . . . . . 8 (Rel dom tpos 𝐹 → (∅ ∈ dom tpos 𝐹 → ∅ ∈ (V × V)))
106, 9mtoi 600 . . . . . . 7 (Rel dom tpos 𝐹 → ¬ ∅ ∈ dom tpos 𝐹)
111, 3breldm 4566 . . . . . . 7 (∅tpos 𝐹𝑦 → ∅ ∈ dom tpos 𝐹)
1210, 11nsyl3 566 . . . . . 6 (∅tpos 𝐹𝑦 → ¬ Rel dom tpos 𝐹)
135, 12sylbir 129 . . . . 5 (∅𝐹𝑦 → ¬ Rel dom tpos 𝐹)
1413exlimiv 1505 . . . 4 (∃𝑦𝐹𝑦 → ¬ Rel dom tpos 𝐹)
152, 14sylbi 118 . . 3 (∅ ∈ dom 𝐹 → ¬ Rel dom tpos 𝐹)
1615con2i 567 . 2 (Rel dom tpos 𝐹 → ¬ ∅ ∈ dom 𝐹)
17 vex 2577 . . . . . 6 𝑥 ∈ V
1817eldm 4559 . . . . 5 (𝑥 ∈ dom tpos 𝐹 ↔ ∃𝑦 𝑥tpos 𝐹𝑦)
19 relcnv 4730 . . . . . . . . . . 11 Rel dom 𝐹
20 df-rel 4379 . . . . . . . . . . 11 (Rel dom 𝐹dom 𝐹 ⊆ (V × V))
2119, 20mpbi 137 . . . . . . . . . 10 dom 𝐹 ⊆ (V × V)
2221sseli 2968 . . . . . . . . 9 (𝑥dom 𝐹𝑥 ∈ (V × V))
2322a1i 9 . . . . . . . 8 ((¬ ∅ ∈ dom 𝐹𝑥tpos 𝐹𝑦) → (𝑥dom 𝐹𝑥 ∈ (V × V)))
24 elsni 3420 . . . . . . . . . . . 12 (𝑥 ∈ {∅} → 𝑥 = ∅)
2524breq1d 3801 . . . . . . . . . . 11 (𝑥 ∈ {∅} → (𝑥tpos 𝐹𝑦 ↔ ∅tpos 𝐹𝑦))
261, 3breldm 4566 . . . . . . . . . . . . 13 (∅𝐹𝑦 → ∅ ∈ dom 𝐹)
2726pm2.24d 562 . . . . . . . . . . . 12 (∅𝐹𝑦 → (¬ ∅ ∈ dom 𝐹𝑥 ∈ (V × V)))
285, 27sylbi 118 . . . . . . . . . . 11 (∅tpos 𝐹𝑦 → (¬ ∅ ∈ dom 𝐹𝑥 ∈ (V × V)))
2925, 28syl6bi 156 . . . . . . . . . 10 (𝑥 ∈ {∅} → (𝑥tpos 𝐹𝑦 → (¬ ∅ ∈ dom 𝐹𝑥 ∈ (V × V))))
3029com3l 79 . . . . . . . . 9 (𝑥tpos 𝐹𝑦 → (¬ ∅ ∈ dom 𝐹 → (𝑥 ∈ {∅} → 𝑥 ∈ (V × V))))
3130impcom 120 . . . . . . . 8 ((¬ ∅ ∈ dom 𝐹𝑥tpos 𝐹𝑦) → (𝑥 ∈ {∅} → 𝑥 ∈ (V × V)))
32 brtpos2 5896 . . . . . . . . . . . 12 (𝑦 ∈ V → (𝑥tpos 𝐹𝑦 ↔ (𝑥 ∈ (dom 𝐹 ∪ {∅}) ∧ {𝑥}𝐹𝑦)))
333, 32ax-mp 7 . . . . . . . . . . 11 (𝑥tpos 𝐹𝑦 ↔ (𝑥 ∈ (dom 𝐹 ∪ {∅}) ∧ {𝑥}𝐹𝑦))
3433simplbi 263 . . . . . . . . . 10 (𝑥tpos 𝐹𝑦𝑥 ∈ (dom 𝐹 ∪ {∅}))
35 elun 3111 . . . . . . . . . 10 (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↔ (𝑥dom 𝐹𝑥 ∈ {∅}))
3634, 35sylib 131 . . . . . . . . 9 (𝑥tpos 𝐹𝑦 → (𝑥dom 𝐹𝑥 ∈ {∅}))
3736adantl 266 . . . . . . . 8 ((¬ ∅ ∈ dom 𝐹𝑥tpos 𝐹𝑦) → (𝑥dom 𝐹𝑥 ∈ {∅}))
3823, 31, 37mpjaod 648 . . . . . . 7 ((¬ ∅ ∈ dom 𝐹𝑥tpos 𝐹𝑦) → 𝑥 ∈ (V × V))
3938ex 112 . . . . . 6 (¬ ∅ ∈ dom 𝐹 → (𝑥tpos 𝐹𝑦𝑥 ∈ (V × V)))
4039exlimdv 1716 . . . . 5 (¬ ∅ ∈ dom 𝐹 → (∃𝑦 𝑥tpos 𝐹𝑦𝑥 ∈ (V × V)))
4118, 40syl5bi 145 . . . 4 (¬ ∅ ∈ dom 𝐹 → (𝑥 ∈ dom tpos 𝐹𝑥 ∈ (V × V)))
4241ssrdv 2978 . . 3 (¬ ∅ ∈ dom 𝐹 → dom tpos 𝐹 ⊆ (V × V))
4342, 7sylibr 141 . 2 (¬ ∅ ∈ dom 𝐹 → Rel dom tpos 𝐹)
4416, 43impbii 121 1 (Rel dom tpos 𝐹 ↔ ¬ ∅ ∈ dom 𝐹)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 101  wb 102  wo 639  wex 1397  wcel 1409  Vcvv 2574  cun 2942  wss 2944  c0 3251  {csn 3402   cuni 3607   class class class wbr 3791   × cxp 4370  ccnv 4371  dom cdm 4372  Rel wrel 4377  tpos ctpos 5889
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-in1 554  ax-in2 555  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-13 1420  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-sep 3902  ax-nul 3910  ax-pow 3954  ax-pr 3971  ax-un 4197
This theorem depends on definitions:  df-bi 114  df-3an 898  df-tru 1262  df-fal 1265  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ne 2221  df-ral 2328  df-rex 2329  df-rab 2332  df-v 2576  df-sbc 2787  df-dif 2947  df-un 2949  df-in 2951  df-ss 2958  df-nul 3252  df-pw 3388  df-sn 3408  df-pr 3409  df-op 3411  df-uni 3608  df-br 3792  df-opab 3846  df-mpt 3847  df-id 4057  df-xp 4378  df-rel 4379  df-cnv 4380  df-co 4381  df-dm 4382  df-rn 4383  df-res 4384  df-ima 4385  df-iota 4894  df-fun 4931  df-fn 4932  df-fv 4937  df-tpos 5890
This theorem is referenced by:  dmtpos  5901
  Copyright terms: Public domain W3C validator