ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  releldmb GIF version

Theorem releldmb 4619
Description: Membership in a domain. (Contributed by Mario Carneiro, 5-Nov-2015.)
Assertion
Ref Expression
releldmb (Rel 𝑅 → (𝐴 ∈ dom 𝑅 ↔ ∃𝑥 𝐴𝑅𝑥))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑅

Proof of Theorem releldmb
StepHypRef Expression
1 eldmg 4578 . . 3 (𝐴 ∈ dom 𝑅 → (𝐴 ∈ dom 𝑅 ↔ ∃𝑥 𝐴𝑅𝑥))
21ibi 174 . 2 (𝐴 ∈ dom 𝑅 → ∃𝑥 𝐴𝑅𝑥)
3 releldm 4617 . . . 4 ((Rel 𝑅𝐴𝑅𝑥) → 𝐴 ∈ dom 𝑅)
43ex 113 . . 3 (Rel 𝑅 → (𝐴𝑅𝑥𝐴 ∈ dom 𝑅))
54exlimdv 1742 . 2 (Rel 𝑅 → (∃𝑥 𝐴𝑅𝑥𝐴 ∈ dom 𝑅))
62, 5impbid2 141 1 (Rel 𝑅 → (𝐴 ∈ dom 𝑅 ↔ ∃𝑥 𝐴𝑅𝑥))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 103  wex 1422  wcel 1434   class class class wbr 3805  dom cdm 4391  Rel wrel 4396
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-sep 3916  ax-pow 3968  ax-pr 3992
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-nf 1391  df-sb 1688  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ral 2358  df-rex 2359  df-v 2612  df-un 2986  df-in 2988  df-ss 2995  df-pw 3402  df-sn 3422  df-pr 3423  df-op 3425  df-br 3806  df-opab 3860  df-xp 4397  df-rel 4398  df-dm 4401
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator