![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > releldmb | GIF version |
Description: Membership in a domain. (Contributed by Mario Carneiro, 5-Nov-2015.) |
Ref | Expression |
---|---|
releldmb | ⊢ (Rel 𝑅 → (𝐴 ∈ dom 𝑅 ↔ ∃𝑥 𝐴𝑅𝑥)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldmg 4578 | . . 3 ⊢ (𝐴 ∈ dom 𝑅 → (𝐴 ∈ dom 𝑅 ↔ ∃𝑥 𝐴𝑅𝑥)) | |
2 | 1 | ibi 174 | . 2 ⊢ (𝐴 ∈ dom 𝑅 → ∃𝑥 𝐴𝑅𝑥) |
3 | releldm 4617 | . . . 4 ⊢ ((Rel 𝑅 ∧ 𝐴𝑅𝑥) → 𝐴 ∈ dom 𝑅) | |
4 | 3 | ex 113 | . . 3 ⊢ (Rel 𝑅 → (𝐴𝑅𝑥 → 𝐴 ∈ dom 𝑅)) |
5 | 4 | exlimdv 1742 | . 2 ⊢ (Rel 𝑅 → (∃𝑥 𝐴𝑅𝑥 → 𝐴 ∈ dom 𝑅)) |
6 | 2, 5 | impbid2 141 | 1 ⊢ (Rel 𝑅 → (𝐴 ∈ dom 𝑅 ↔ ∃𝑥 𝐴𝑅𝑥)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 103 ∃wex 1422 ∈ wcel 1434 class class class wbr 3805 dom cdm 4391 Rel wrel 4396 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-14 1446 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2065 ax-sep 3916 ax-pow 3968 ax-pr 3992 |
This theorem depends on definitions: df-bi 115 df-3an 922 df-tru 1288 df-nf 1391 df-sb 1688 df-clab 2070 df-cleq 2076 df-clel 2079 df-nfc 2212 df-ral 2358 df-rex 2359 df-v 2612 df-un 2986 df-in 2988 df-ss 2995 df-pw 3402 df-sn 3422 df-pr 3423 df-op 3425 df-br 3806 df-opab 3860 df-xp 4397 df-rel 4398 df-dm 4401 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |