ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  relrelss GIF version

Theorem relrelss 4874
Description: Two ways to describe the structure of a two-place operation. (Contributed by NM, 17-Dec-2008.)
Assertion
Ref Expression
relrelss ((Rel 𝐴 ∧ Rel dom 𝐴) ↔ 𝐴 ⊆ ((V × V) × V))

Proof of Theorem relrelss
StepHypRef Expression
1 df-rel 4378 . . 3 (Rel dom 𝐴 ↔ dom 𝐴 ⊆ (V × V))
21anbi2i 445 . 2 ((Rel 𝐴 ∧ Rel dom 𝐴) ↔ (Rel 𝐴 ∧ dom 𝐴 ⊆ (V × V)))
3 relssdmrn 4871 . . . 4 (Rel 𝐴𝐴 ⊆ (dom 𝐴 × ran 𝐴))
4 ssv 3020 . . . . 5 ran 𝐴 ⊆ V
5 xpss12 4473 . . . . 5 ((dom 𝐴 ⊆ (V × V) ∧ ran 𝐴 ⊆ V) → (dom 𝐴 × ran 𝐴) ⊆ ((V × V) × V))
64, 5mpan2 416 . . . 4 (dom 𝐴 ⊆ (V × V) → (dom 𝐴 × ran 𝐴) ⊆ ((V × V) × V))
73, 6sylan9ss 3013 . . 3 ((Rel 𝐴 ∧ dom 𝐴 ⊆ (V × V)) → 𝐴 ⊆ ((V × V) × V))
8 xpss 4474 . . . . . 6 ((V × V) × V) ⊆ (V × V)
9 sstr 3008 . . . . . 6 ((𝐴 ⊆ ((V × V) × V) ∧ ((V × V) × V) ⊆ (V × V)) → 𝐴 ⊆ (V × V))
108, 9mpan2 416 . . . . 5 (𝐴 ⊆ ((V × V) × V) → 𝐴 ⊆ (V × V))
11 df-rel 4378 . . . . 5 (Rel 𝐴𝐴 ⊆ (V × V))
1210, 11sylibr 132 . . . 4 (𝐴 ⊆ ((V × V) × V) → Rel 𝐴)
13 dmss 4562 . . . . 5 (𝐴 ⊆ ((V × V) × V) → dom 𝐴 ⊆ dom ((V × V) × V))
14 vn0m 3266 . . . . . 6 𝑥 𝑥 ∈ V
15 dmxpm 4583 . . . . . 6 (∃𝑥 𝑥 ∈ V → dom ((V × V) × V) = (V × V))
1614, 15ax-mp 7 . . . . 5 dom ((V × V) × V) = (V × V)
1713, 16syl6sseq 3046 . . . 4 (𝐴 ⊆ ((V × V) × V) → dom 𝐴 ⊆ (V × V))
1812, 17jca 300 . . 3 (𝐴 ⊆ ((V × V) × V) → (Rel 𝐴 ∧ dom 𝐴 ⊆ (V × V)))
197, 18impbii 124 . 2 ((Rel 𝐴 ∧ dom 𝐴 ⊆ (V × V)) ↔ 𝐴 ⊆ ((V × V) × V))
202, 19bitri 182 1 ((Rel 𝐴 ∧ Rel dom 𝐴) ↔ 𝐴 ⊆ ((V × V) × V))
Colors of variables: wff set class
Syntax hints:  wa 102  wb 103   = wceq 1285  wex 1422  wcel 1434  Vcvv 2602  wss 2974   × cxp 4369  dom cdm 4371  ran crn 4372  Rel wrel 4376
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064  ax-sep 3904  ax-pow 3956  ax-pr 3972
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-nf 1391  df-sb 1687  df-eu 1945  df-mo 1946  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-ral 2354  df-rex 2355  df-v 2604  df-un 2978  df-in 2980  df-ss 2987  df-pw 3392  df-sn 3412  df-pr 3413  df-op 3415  df-br 3794  df-opab 3848  df-xp 4377  df-rel 4378  df-cnv 4379  df-dm 4381  df-rn 4382
This theorem is referenced by:  dftpos3  5911  tpostpos2  5914
  Copyright terms: Public domain W3C validator