ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  relssdmrn GIF version

Theorem relssdmrn 4868
Description: A relation is included in the cross product of its domain and range. Exercise 4.12(t) of [Mendelson] p. 235. (Contributed by NM, 3-Aug-1994.)
Assertion
Ref Expression
relssdmrn (Rel 𝐴𝐴 ⊆ (dom 𝐴 × ran 𝐴))

Proof of Theorem relssdmrn
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 19 . 2 (Rel 𝐴 → Rel 𝐴)
2 19.8a 1498 . . . 4 (⟨𝑥, 𝑦⟩ ∈ 𝐴 → ∃𝑦𝑥, 𝑦⟩ ∈ 𝐴)
3 19.8a 1498 . . . 4 (⟨𝑥, 𝑦⟩ ∈ 𝐴 → ∃𝑥𝑥, 𝑦⟩ ∈ 𝐴)
4 opelxp 4401 . . . . 5 (⟨𝑥, 𝑦⟩ ∈ (dom 𝐴 × ran 𝐴) ↔ (𝑥 ∈ dom 𝐴𝑦 ∈ ran 𝐴))
5 vex 2577 . . . . . . 7 𝑥 ∈ V
65eldm2 4560 . . . . . 6 (𝑥 ∈ dom 𝐴 ↔ ∃𝑦𝑥, 𝑦⟩ ∈ 𝐴)
7 vex 2577 . . . . . . 7 𝑦 ∈ V
87elrn2 4603 . . . . . 6 (𝑦 ∈ ran 𝐴 ↔ ∃𝑥𝑥, 𝑦⟩ ∈ 𝐴)
96, 8anbi12i 441 . . . . 5 ((𝑥 ∈ dom 𝐴𝑦 ∈ ran 𝐴) ↔ (∃𝑦𝑥, 𝑦⟩ ∈ 𝐴 ∧ ∃𝑥𝑥, 𝑦⟩ ∈ 𝐴))
104, 9bitri 177 . . . 4 (⟨𝑥, 𝑦⟩ ∈ (dom 𝐴 × ran 𝐴) ↔ (∃𝑦𝑥, 𝑦⟩ ∈ 𝐴 ∧ ∃𝑥𝑥, 𝑦⟩ ∈ 𝐴))
112, 3, 10sylanbrc 402 . . 3 (⟨𝑥, 𝑦⟩ ∈ 𝐴 → ⟨𝑥, 𝑦⟩ ∈ (dom 𝐴 × ran 𝐴))
1211a1i 9 . 2 (Rel 𝐴 → (⟨𝑥, 𝑦⟩ ∈ 𝐴 → ⟨𝑥, 𝑦⟩ ∈ (dom 𝐴 × ran 𝐴)))
131, 12relssdv 4459 1 (Rel 𝐴𝐴 ⊆ (dom 𝐴 × ran 𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 101  wex 1397  wcel 1409  wss 2944  cop 3405   × cxp 4370  dom cdm 4372  ran crn 4373  Rel wrel 4377
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-sep 3902  ax-pow 3954  ax-pr 3971
This theorem depends on definitions:  df-bi 114  df-3an 898  df-tru 1262  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ral 2328  df-rex 2329  df-v 2576  df-un 2949  df-in 2951  df-ss 2958  df-pw 3388  df-sn 3408  df-pr 3409  df-op 3411  df-br 3792  df-opab 3846  df-xp 4378  df-rel 4379  df-cnv 4380  df-dm 4382  df-rn 4383
This theorem is referenced by:  cnvssrndm  4869  cossxp  4870  relrelss  4871  relfld  4873  cnvexg  4882  fssxp  5085  oprabss  5617  resfunexgALT  5764  cofunexg  5765  fnexALT  5767  erssxp  6159
  Copyright terms: Public domain W3C validator