ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  remul2 GIF version

Theorem remul2 9945
Description: Real part of a product. (Contributed by Mario Carneiro, 2-Aug-2014.)
Assertion
Ref Expression
remul2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℂ) → (ℜ‘(𝐴 · 𝐵)) = (𝐴 · (ℜ‘𝐵)))

Proof of Theorem remul2
StepHypRef Expression
1 recn 7204 . . 3 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
2 remul 9944 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℜ‘(𝐴 · 𝐵)) = (((ℜ‘𝐴) · (ℜ‘𝐵)) − ((ℑ‘𝐴) · (ℑ‘𝐵))))
31, 2sylan 277 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℂ) → (ℜ‘(𝐴 · 𝐵)) = (((ℜ‘𝐴) · (ℜ‘𝐵)) − ((ℑ‘𝐴) · (ℑ‘𝐵))))
4 rere 9937 . . . . 5 (𝐴 ∈ ℝ → (ℜ‘𝐴) = 𝐴)
54adantr 270 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℂ) → (ℜ‘𝐴) = 𝐴)
65oveq1d 5579 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℂ) → ((ℜ‘𝐴) · (ℜ‘𝐵)) = (𝐴 · (ℜ‘𝐵)))
7 reim0 9933 . . . . 5 (𝐴 ∈ ℝ → (ℑ‘𝐴) = 0)
87oveq1d 5579 . . . 4 (𝐴 ∈ ℝ → ((ℑ‘𝐴) · (ℑ‘𝐵)) = (0 · (ℑ‘𝐵)))
9 imcl 9926 . . . . . 6 (𝐵 ∈ ℂ → (ℑ‘𝐵) ∈ ℝ)
109recnd 7245 . . . . 5 (𝐵 ∈ ℂ → (ℑ‘𝐵) ∈ ℂ)
1110mul02d 7599 . . . 4 (𝐵 ∈ ℂ → (0 · (ℑ‘𝐵)) = 0)
128, 11sylan9eq 2135 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℂ) → ((ℑ‘𝐴) · (ℑ‘𝐵)) = 0)
136, 12oveq12d 5582 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℂ) → (((ℜ‘𝐴) · (ℜ‘𝐵)) − ((ℑ‘𝐴) · (ℑ‘𝐵))) = ((𝐴 · (ℜ‘𝐵)) − 0))
14 recl 9925 . . . . 5 (𝐵 ∈ ℂ → (ℜ‘𝐵) ∈ ℝ)
1514recnd 7245 . . . 4 (𝐵 ∈ ℂ → (ℜ‘𝐵) ∈ ℂ)
16 mulcl 7198 . . . 4 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐵) ∈ ℂ) → (𝐴 · (ℜ‘𝐵)) ∈ ℂ)
171, 15, 16syl2an 283 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℂ) → (𝐴 · (ℜ‘𝐵)) ∈ ℂ)
1817subid1d 7511 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℂ) → ((𝐴 · (ℜ‘𝐵)) − 0) = (𝐴 · (ℜ‘𝐵)))
193, 13, 183eqtrd 2119 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℂ) → (ℜ‘(𝐴 · 𝐵)) = (𝐴 · (ℜ‘𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102   = wceq 1285  wcel 1434  cfv 4953  (class class class)co 5564  cc 7077  cr 7078  0cc0 7079   · cmul 7084  cmin 7382  cre 9912  cim 9913
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-sep 3917  ax-pow 3969  ax-pr 3993  ax-un 4217  ax-setind 4309  ax-cnex 7165  ax-resscn 7166  ax-1cn 7167  ax-1re 7168  ax-icn 7169  ax-addcl 7170  ax-addrcl 7171  ax-mulcl 7172  ax-mulrcl 7173  ax-addcom 7174  ax-mulcom 7175  ax-addass 7176  ax-mulass 7177  ax-distr 7178  ax-i2m1 7179  ax-0lt1 7180  ax-1rid 7181  ax-0id 7182  ax-rnegex 7183  ax-precex 7184  ax-cnre 7185  ax-pre-ltirr 7186  ax-pre-ltwlin 7187  ax-pre-lttrn 7188  ax-pre-apti 7189  ax-pre-ltadd 7190  ax-pre-mulgt0 7191  ax-pre-mulext 7192
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ne 2250  df-nel 2345  df-ral 2358  df-rex 2359  df-reu 2360  df-rmo 2361  df-rab 2362  df-v 2612  df-sbc 2826  df-dif 2985  df-un 2987  df-in 2989  df-ss 2996  df-pw 3403  df-sn 3423  df-pr 3424  df-op 3426  df-uni 3623  df-br 3807  df-opab 3861  df-mpt 3862  df-id 4077  df-po 4080  df-iso 4081  df-xp 4398  df-rel 4399  df-cnv 4400  df-co 4401  df-dm 4402  df-rn 4403  df-res 4404  df-ima 4405  df-iota 4918  df-fun 4955  df-fn 4956  df-f 4957  df-fv 4961  df-riota 5520  df-ov 5567  df-oprab 5568  df-mpt2 5569  df-pnf 7253  df-mnf 7254  df-xr 7255  df-ltxr 7256  df-le 7257  df-sub 7384  df-neg 7385  df-reap 7778  df-ap 7785  df-div 7864  df-2 8201  df-cj 9914  df-re 9915  df-im 9916
This theorem is referenced by:  redivap  9946  remul2d  10044
  Copyright terms: Public domain W3C validator