ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reneg GIF version

Theorem reneg 10608
Description: Real part of negative. (Contributed by NM, 17-Mar-2005.) (Revised by Mario Carneiro, 14-Jul-2014.)
Assertion
Ref Expression
reneg (𝐴 ∈ ℂ → (ℜ‘-𝐴) = -(ℜ‘𝐴))

Proof of Theorem reneg
StepHypRef Expression
1 recl 10593 . . . . . 6 (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℝ)
21recnd 7762 . . . . 5 (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℂ)
3 ax-icn 7683 . . . . . 6 i ∈ ℂ
4 imcl 10594 . . . . . . 7 (𝐴 ∈ ℂ → (ℑ‘𝐴) ∈ ℝ)
54recnd 7762 . . . . . 6 (𝐴 ∈ ℂ → (ℑ‘𝐴) ∈ ℂ)
6 mulcl 7715 . . . . . 6 ((i ∈ ℂ ∧ (ℑ‘𝐴) ∈ ℂ) → (i · (ℑ‘𝐴)) ∈ ℂ)
73, 5, 6sylancr 410 . . . . 5 (𝐴 ∈ ℂ → (i · (ℑ‘𝐴)) ∈ ℂ)
82, 7negdid 8054 . . . 4 (𝐴 ∈ ℂ → -((ℜ‘𝐴) + (i · (ℑ‘𝐴))) = (-(ℜ‘𝐴) + -(i · (ℑ‘𝐴))))
9 replim 10599 . . . . 5 (𝐴 ∈ ℂ → 𝐴 = ((ℜ‘𝐴) + (i · (ℑ‘𝐴))))
109negeqd 7925 . . . 4 (𝐴 ∈ ℂ → -𝐴 = -((ℜ‘𝐴) + (i · (ℑ‘𝐴))))
11 mulneg2 8126 . . . . . 6 ((i ∈ ℂ ∧ (ℑ‘𝐴) ∈ ℂ) → (i · -(ℑ‘𝐴)) = -(i · (ℑ‘𝐴)))
123, 5, 11sylancr 410 . . . . 5 (𝐴 ∈ ℂ → (i · -(ℑ‘𝐴)) = -(i · (ℑ‘𝐴)))
1312oveq2d 5758 . . . 4 (𝐴 ∈ ℂ → (-(ℜ‘𝐴) + (i · -(ℑ‘𝐴))) = (-(ℜ‘𝐴) + -(i · (ℑ‘𝐴))))
148, 10, 133eqtr4d 2160 . . 3 (𝐴 ∈ ℂ → -𝐴 = (-(ℜ‘𝐴) + (i · -(ℑ‘𝐴))))
1514fveq2d 5393 . 2 (𝐴 ∈ ℂ → (ℜ‘-𝐴) = (ℜ‘(-(ℜ‘𝐴) + (i · -(ℑ‘𝐴)))))
161renegcld 8110 . . 3 (𝐴 ∈ ℂ → -(ℜ‘𝐴) ∈ ℝ)
174renegcld 8110 . . 3 (𝐴 ∈ ℂ → -(ℑ‘𝐴) ∈ ℝ)
18 crre 10597 . . 3 ((-(ℜ‘𝐴) ∈ ℝ ∧ -(ℑ‘𝐴) ∈ ℝ) → (ℜ‘(-(ℜ‘𝐴) + (i · -(ℑ‘𝐴)))) = -(ℜ‘𝐴))
1916, 17, 18syl2anc 408 . 2 (𝐴 ∈ ℂ → (ℜ‘(-(ℜ‘𝐴) + (i · -(ℑ‘𝐴)))) = -(ℜ‘𝐴))
2015, 19eqtrd 2150 1 (𝐴 ∈ ℂ → (ℜ‘-𝐴) = -(ℜ‘𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1316  wcel 1465  cfv 5093  (class class class)co 5742  cc 7586  cr 7587  ici 7590   + caddc 7591   · cmul 7593  -cneg 7902  cre 10580  cim 10581
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 588  ax-in2 589  ax-io 683  ax-5 1408  ax-7 1409  ax-gen 1410  ax-ie1 1454  ax-ie2 1455  ax-8 1467  ax-10 1468  ax-11 1469  ax-i12 1470  ax-bndl 1471  ax-4 1472  ax-13 1476  ax-14 1477  ax-17 1491  ax-i9 1495  ax-ial 1499  ax-i5r 1500  ax-ext 2099  ax-sep 4016  ax-pow 4068  ax-pr 4101  ax-un 4325  ax-setind 4422  ax-cnex 7679  ax-resscn 7680  ax-1cn 7681  ax-1re 7682  ax-icn 7683  ax-addcl 7684  ax-addrcl 7685  ax-mulcl 7686  ax-mulrcl 7687  ax-addcom 7688  ax-mulcom 7689  ax-addass 7690  ax-mulass 7691  ax-distr 7692  ax-i2m1 7693  ax-0lt1 7694  ax-1rid 7695  ax-0id 7696  ax-rnegex 7697  ax-precex 7698  ax-cnre 7699  ax-pre-ltirr 7700  ax-pre-ltwlin 7701  ax-pre-lttrn 7702  ax-pre-apti 7703  ax-pre-ltadd 7704  ax-pre-mulgt0 7705  ax-pre-mulext 7706
This theorem depends on definitions:  df-bi 116  df-3an 949  df-tru 1319  df-fal 1322  df-nf 1422  df-sb 1721  df-eu 1980  df-mo 1981  df-clab 2104  df-cleq 2110  df-clel 2113  df-nfc 2247  df-ne 2286  df-nel 2381  df-ral 2398  df-rex 2399  df-reu 2400  df-rmo 2401  df-rab 2402  df-v 2662  df-sbc 2883  df-dif 3043  df-un 3045  df-in 3047  df-ss 3054  df-pw 3482  df-sn 3503  df-pr 3504  df-op 3506  df-uni 3707  df-br 3900  df-opab 3960  df-mpt 3961  df-id 4185  df-po 4188  df-iso 4189  df-xp 4515  df-rel 4516  df-cnv 4517  df-co 4518  df-dm 4519  df-rn 4520  df-res 4521  df-ima 4522  df-iota 5058  df-fun 5095  df-fn 5096  df-f 5097  df-fv 5101  df-riota 5698  df-ov 5745  df-oprab 5746  df-mpo 5747  df-pnf 7770  df-mnf 7771  df-xr 7772  df-ltxr 7773  df-le 7774  df-sub 7903  df-neg 7904  df-reap 8305  df-ap 8312  df-div 8401  df-2 8747  df-cj 10582  df-re 10583  df-im 10584
This theorem is referenced by:  resub  10610  cjneg  10630  renegi  10664  renegd  10694
  Copyright terms: Public domain W3C validator