ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  renegcl GIF version

Theorem renegcl 7334
Description: Closure law for negative of reals. (Contributed by NM, 20-Jan-1997.)
Assertion
Ref Expression
renegcl (𝐴 ∈ ℝ → -𝐴 ∈ ℝ)

Proof of Theorem renegcl
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ax-rnegex 7050 . 2 (𝐴 ∈ ℝ → ∃𝑥 ∈ ℝ (𝐴 + 𝑥) = 0)
2 recn 7071 . . . . 5 (𝑥 ∈ ℝ → 𝑥 ∈ ℂ)
3 df-neg 7247 . . . . . . 7 -𝐴 = (0 − 𝐴)
43eqeq1i 2063 . . . . . 6 (-𝐴 = 𝑥 ↔ (0 − 𝐴) = 𝑥)
5 recn 7071 . . . . . . 7 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
6 0cn 7076 . . . . . . . 8 0 ∈ ℂ
7 subadd 7276 . . . . . . . 8 ((0 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) → ((0 − 𝐴) = 𝑥 ↔ (𝐴 + 𝑥) = 0))
86, 7mp3an1 1230 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) → ((0 − 𝐴) = 𝑥 ↔ (𝐴 + 𝑥) = 0))
95, 8sylan 271 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℂ) → ((0 − 𝐴) = 𝑥 ↔ (𝐴 + 𝑥) = 0))
104, 9syl5bb 185 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℂ) → (-𝐴 = 𝑥 ↔ (𝐴 + 𝑥) = 0))
112, 10sylan2 274 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (-𝐴 = 𝑥 ↔ (𝐴 + 𝑥) = 0))
12 eleq1a 2125 . . . . 5 (𝑥 ∈ ℝ → (-𝐴 = 𝑥 → -𝐴 ∈ ℝ))
1312adantl 266 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (-𝐴 = 𝑥 → -𝐴 ∈ ℝ))
1411, 13sylbird 163 . . 3 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((𝐴 + 𝑥) = 0 → -𝐴 ∈ ℝ))
1514rexlimdva 2450 . 2 (𝐴 ∈ ℝ → (∃𝑥 ∈ ℝ (𝐴 + 𝑥) = 0 → -𝐴 ∈ ℝ))
161, 15mpd 13 1 (𝐴 ∈ ℝ → -𝐴 ∈ ℝ)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 101  wb 102   = wceq 1259  wcel 1409  wrex 2324  (class class class)co 5539  cc 6944  cr 6945  0cc0 6946   + caddc 6949  cmin 7244  -cneg 7245
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-in1 554  ax-in2 555  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-sep 3902  ax-pow 3954  ax-pr 3971  ax-setind 4289  ax-resscn 7033  ax-1cn 7034  ax-icn 7036  ax-addcl 7037  ax-addrcl 7038  ax-mulcl 7039  ax-addcom 7041  ax-addass 7043  ax-distr 7045  ax-i2m1 7046  ax-0id 7049  ax-rnegex 7050  ax-cnre 7052
This theorem depends on definitions:  df-bi 114  df-3an 898  df-tru 1262  df-fal 1265  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ne 2221  df-ral 2328  df-rex 2329  df-reu 2330  df-rab 2332  df-v 2576  df-sbc 2787  df-dif 2947  df-un 2949  df-in 2951  df-ss 2958  df-pw 3388  df-sn 3408  df-pr 3409  df-op 3411  df-uni 3608  df-br 3792  df-opab 3846  df-id 4057  df-xp 4378  df-rel 4379  df-cnv 4380  df-co 4381  df-dm 4382  df-iota 4894  df-fun 4931  df-fv 4937  df-riota 5495  df-ov 5542  df-oprab 5543  df-mpt2 5544  df-sub 7246  df-neg 7247
This theorem is referenced by:  renegcli  7335  resubcl  7337  negreb  7338  renegcld  7449  ltnegcon1  7531  ltnegcon2  7532  lenegcon1  7534  lenegcon2  7535  mullt0  7548  recexre  7642  elnnz  8311  btwnz  8415  ublbneg  8644  negm  8646  rpnegap  8712  xnegcl  8845  xnegneg  8846  xltnegi  8848  iooneg  8956  iccneg  8957  icoshftf1o  8959  crim  9685  absnid  9899  absdiflt  9918  absdifle  9919
  Copyright terms: Public domain W3C validator