ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rereceu GIF version

Theorem rereceu 7020
Description: The reciprocal from axprecex 7011 is unique. (Contributed by Jim Kingdon, 15-Jul-2021.)
Assertion
Ref Expression
rereceu ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → ∃!𝑥 ∈ ℝ (𝐴 · 𝑥) = 1)
Distinct variable group:   𝑥,𝐴

Proof of Theorem rereceu
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 axprecex 7011 . . 3 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → ∃𝑥 ∈ ℝ (0 < 𝑥 ∧ (𝐴 · 𝑥) = 1))
2 simpr 107 . . . 4 ((0 < 𝑥 ∧ (𝐴 · 𝑥) = 1) → (𝐴 · 𝑥) = 1)
32reximi 2433 . . 3 (∃𝑥 ∈ ℝ (0 < 𝑥 ∧ (𝐴 · 𝑥) = 1) → ∃𝑥 ∈ ℝ (𝐴 · 𝑥) = 1)
41, 3syl 14 . 2 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → ∃𝑥 ∈ ℝ (𝐴 · 𝑥) = 1)
5 eqtr3 2075 . . . . 5 (((𝐴 · 𝑥) = 1 ∧ (𝐴 · 𝑦) = 1) → (𝐴 · 𝑥) = (𝐴 · 𝑦))
6 axprecex 7011 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → ∃𝑧 ∈ ℝ (0 < 𝑧 ∧ (𝐴 · 𝑧) = 1))
76adantr 265 . . . . . 6 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → ∃𝑧 ∈ ℝ (0 < 𝑧 ∧ (𝐴 · 𝑧) = 1))
8 axresscn 6993 . . . . . . . . . . . . 13 ℝ ⊆ ℂ
9 simpll 489 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → 𝐴 ∈ ℝ)
108, 9sseldi 2970 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → 𝐴 ∈ ℂ)
11 simprl 491 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → 𝑥 ∈ ℝ)
128, 11sseldi 2970 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → 𝑥 ∈ ℂ)
13 axmulcom 7002 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝐴 · 𝑥) = (𝑥 · 𝐴))
1410, 12, 13syl2anc 397 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝐴 · 𝑥) = (𝑥 · 𝐴))
15 simprr 492 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → 𝑦 ∈ ℝ)
168, 15sseldi 2970 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → 𝑦 ∈ ℂ)
17 axmulcom 7002 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝐴 · 𝑦) = (𝑦 · 𝐴))
1810, 16, 17syl2anc 397 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝐴 · 𝑦) = (𝑦 · 𝐴))
1914, 18eqeq12d 2070 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → ((𝐴 · 𝑥) = (𝐴 · 𝑦) ↔ (𝑥 · 𝐴) = (𝑦 · 𝐴)))
2019adantr 265 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ (𝑧 ∈ ℝ ∧ (0 < 𝑧 ∧ (𝐴 · 𝑧) = 1))) → ((𝐴 · 𝑥) = (𝐴 · 𝑦) ↔ (𝑥 · 𝐴) = (𝑦 · 𝐴)))
21 oveq1 5546 . . . . . . . . 9 ((𝑥 · 𝐴) = (𝑦 · 𝐴) → ((𝑥 · 𝐴) · 𝑧) = ((𝑦 · 𝐴) · 𝑧))
2220, 21syl6bi 156 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ (𝑧 ∈ ℝ ∧ (0 < 𝑧 ∧ (𝐴 · 𝑧) = 1))) → ((𝐴 · 𝑥) = (𝐴 · 𝑦) → ((𝑥 · 𝐴) · 𝑧) = ((𝑦 · 𝐴) · 𝑧)))
2312adantr 265 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ (𝑧 ∈ ℝ ∧ (0 < 𝑧 ∧ (𝐴 · 𝑧) = 1))) → 𝑥 ∈ ℂ)
2410adantr 265 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ (𝑧 ∈ ℝ ∧ (0 < 𝑧 ∧ (𝐴 · 𝑧) = 1))) → 𝐴 ∈ ℂ)
25 simprl 491 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ (𝑧 ∈ ℝ ∧ (0 < 𝑧 ∧ (𝐴 · 𝑧) = 1))) → 𝑧 ∈ ℝ)
268, 25sseldi 2970 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ (𝑧 ∈ ℝ ∧ (0 < 𝑧 ∧ (𝐴 · 𝑧) = 1))) → 𝑧 ∈ ℂ)
27 axmulass 7004 . . . . . . . . . 10 ((𝑥 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑥 · 𝐴) · 𝑧) = (𝑥 · (𝐴 · 𝑧)))
2823, 24, 26, 27syl3anc 1146 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ (𝑧 ∈ ℝ ∧ (0 < 𝑧 ∧ (𝐴 · 𝑧) = 1))) → ((𝑥 · 𝐴) · 𝑧) = (𝑥 · (𝐴 · 𝑧)))
2916adantr 265 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ (𝑧 ∈ ℝ ∧ (0 < 𝑧 ∧ (𝐴 · 𝑧) = 1))) → 𝑦 ∈ ℂ)
30 axmulass 7004 . . . . . . . . . 10 ((𝑦 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑦 · 𝐴) · 𝑧) = (𝑦 · (𝐴 · 𝑧)))
3129, 24, 26, 30syl3anc 1146 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ (𝑧 ∈ ℝ ∧ (0 < 𝑧 ∧ (𝐴 · 𝑧) = 1))) → ((𝑦 · 𝐴) · 𝑧) = (𝑦 · (𝐴 · 𝑧)))
3228, 31eqeq12d 2070 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ (𝑧 ∈ ℝ ∧ (0 < 𝑧 ∧ (𝐴 · 𝑧) = 1))) → (((𝑥 · 𝐴) · 𝑧) = ((𝑦 · 𝐴) · 𝑧) ↔ (𝑥 · (𝐴 · 𝑧)) = (𝑦 · (𝐴 · 𝑧))))
3322, 32sylibd 142 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ (𝑧 ∈ ℝ ∧ (0 < 𝑧 ∧ (𝐴 · 𝑧) = 1))) → ((𝐴 · 𝑥) = (𝐴 · 𝑦) → (𝑥 · (𝐴 · 𝑧)) = (𝑦 · (𝐴 · 𝑧))))
34 oveq2 5547 . . . . . . . . . 10 ((𝐴 · 𝑧) = 1 → (𝑥 · (𝐴 · 𝑧)) = (𝑥 · 1))
3534ad2antll 468 . . . . . . . . 9 ((𝑧 ∈ ℝ ∧ (0 < 𝑧 ∧ (𝐴 · 𝑧) = 1)) → (𝑥 · (𝐴 · 𝑧)) = (𝑥 · 1))
36 ax1rid 7008 . . . . . . . . . 10 (𝑥 ∈ ℝ → (𝑥 · 1) = 𝑥)
3711, 36syl 14 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝑥 · 1) = 𝑥)
3835, 37sylan9eqr 2110 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ (𝑧 ∈ ℝ ∧ (0 < 𝑧 ∧ (𝐴 · 𝑧) = 1))) → (𝑥 · (𝐴 · 𝑧)) = 𝑥)
39 oveq2 5547 . . . . . . . . . 10 ((𝐴 · 𝑧) = 1 → (𝑦 · (𝐴 · 𝑧)) = (𝑦 · 1))
4039ad2antll 468 . . . . . . . . 9 ((𝑧 ∈ ℝ ∧ (0 < 𝑧 ∧ (𝐴 · 𝑧) = 1)) → (𝑦 · (𝐴 · 𝑧)) = (𝑦 · 1))
41 ax1rid 7008 . . . . . . . . . 10 (𝑦 ∈ ℝ → (𝑦 · 1) = 𝑦)
4241ad2antll 468 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝑦 · 1) = 𝑦)
4340, 42sylan9eqr 2110 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ (𝑧 ∈ ℝ ∧ (0 < 𝑧 ∧ (𝐴 · 𝑧) = 1))) → (𝑦 · (𝐴 · 𝑧)) = 𝑦)
4438, 43eqeq12d 2070 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ (𝑧 ∈ ℝ ∧ (0 < 𝑧 ∧ (𝐴 · 𝑧) = 1))) → ((𝑥 · (𝐴 · 𝑧)) = (𝑦 · (𝐴 · 𝑧)) ↔ 𝑥 = 𝑦))
4533, 44sylibd 142 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ (𝑧 ∈ ℝ ∧ (0 < 𝑧 ∧ (𝐴 · 𝑧) = 1))) → ((𝐴 · 𝑥) = (𝐴 · 𝑦) → 𝑥 = 𝑦))
467, 45rexlimddv 2454 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → ((𝐴 · 𝑥) = (𝐴 · 𝑦) → 𝑥 = 𝑦))
475, 46syl5 32 . . . 4 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (((𝐴 · 𝑥) = 1 ∧ (𝐴 · 𝑦) = 1) → 𝑥 = 𝑦))
4847ralrimivva 2418 . . 3 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (((𝐴 · 𝑥) = 1 ∧ (𝐴 · 𝑦) = 1) → 𝑥 = 𝑦))
49 oveq2 5547 . . . . 5 (𝑥 = 𝑦 → (𝐴 · 𝑥) = (𝐴 · 𝑦))
5049eqeq1d 2064 . . . 4 (𝑥 = 𝑦 → ((𝐴 · 𝑥) = 1 ↔ (𝐴 · 𝑦) = 1))
5150rmo4 2756 . . 3 (∃*𝑥 ∈ ℝ (𝐴 · 𝑥) = 1 ↔ ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (((𝐴 · 𝑥) = 1 ∧ (𝐴 · 𝑦) = 1) → 𝑥 = 𝑦))
5248, 51sylibr 141 . 2 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → ∃*𝑥 ∈ ℝ (𝐴 · 𝑥) = 1)
53 reu5 2539 . 2 (∃!𝑥 ∈ ℝ (𝐴 · 𝑥) = 1 ↔ (∃𝑥 ∈ ℝ (𝐴 · 𝑥) = 1 ∧ ∃*𝑥 ∈ ℝ (𝐴 · 𝑥) = 1))
544, 52, 53sylanbrc 402 1 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → ∃!𝑥 ∈ ℝ (𝐴 · 𝑥) = 1)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 101  wb 102   = wceq 1259  wcel 1409  wral 2323  wrex 2324  ∃!wreu 2325  ∃*wrmo 2326   class class class wbr 3791  (class class class)co 5539  cc 6944  cr 6945  0cc0 6946  1c1 6947   < cltrr 6950   · cmul 6951
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-in1 554  ax-in2 555  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-13 1420  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-coll 3899  ax-sep 3902  ax-nul 3910  ax-pow 3954  ax-pr 3971  ax-un 4197  ax-setind 4289  ax-iinf 4338
This theorem depends on definitions:  df-bi 114  df-dc 754  df-3or 897  df-3an 898  df-tru 1262  df-fal 1265  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ne 2221  df-ral 2328  df-rex 2329  df-reu 2330  df-rmo 2331  df-rab 2332  df-v 2576  df-sbc 2787  df-csb 2880  df-dif 2947  df-un 2949  df-in 2951  df-ss 2958  df-nul 3252  df-pw 3388  df-sn 3408  df-pr 3409  df-op 3411  df-uni 3608  df-int 3643  df-iun 3686  df-br 3792  df-opab 3846  df-mpt 3847  df-tr 3882  df-eprel 4053  df-id 4057  df-po 4060  df-iso 4061  df-iord 4130  df-on 4132  df-suc 4135  df-iom 4341  df-xp 4378  df-rel 4379  df-cnv 4380  df-co 4381  df-dm 4382  df-rn 4383  df-res 4384  df-ima 4385  df-iota 4894  df-fun 4931  df-fn 4932  df-f 4933  df-f1 4934  df-fo 4935  df-f1o 4936  df-fv 4937  df-ov 5542  df-oprab 5543  df-mpt2 5544  df-1st 5794  df-2nd 5795  df-recs 5950  df-irdg 5987  df-1o 6031  df-2o 6032  df-oadd 6035  df-omul 6036  df-er 6136  df-ec 6138  df-qs 6142  df-ni 6459  df-pli 6460  df-mi 6461  df-lti 6462  df-plpq 6499  df-mpq 6500  df-enq 6502  df-nqqs 6503  df-plqqs 6504  df-mqqs 6505  df-1nqqs 6506  df-rq 6507  df-ltnqqs 6508  df-enq0 6579  df-nq0 6580  df-0nq0 6581  df-plq0 6582  df-mq0 6583  df-inp 6621  df-i1p 6622  df-iplp 6623  df-imp 6624  df-iltp 6625  df-enr 6868  df-nr 6869  df-plr 6870  df-mr 6871  df-ltr 6872  df-0r 6873  df-1r 6874  df-m1r 6875  df-c 6952  df-0 6953  df-1 6954  df-r 6956  df-mul 6958  df-lt 6959
This theorem is referenced by:  recriota  7021
  Copyright terms: Public domain W3C validator