![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > reseq12i | GIF version |
Description: Equality inference for restrictions. (Contributed by NM, 21-Oct-2014.) |
Ref | Expression |
---|---|
reseqi.1 | ⊢ 𝐴 = 𝐵 |
reseqi.2 | ⊢ 𝐶 = 𝐷 |
Ref | Expression |
---|---|
reseq12i | ⊢ (𝐴 ↾ 𝐶) = (𝐵 ↾ 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reseqi.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
2 | 1 | reseq1i 4656 | . 2 ⊢ (𝐴 ↾ 𝐶) = (𝐵 ↾ 𝐶) |
3 | reseqi.2 | . . 3 ⊢ 𝐶 = 𝐷 | |
4 | 3 | reseq2i 4657 | . 2 ⊢ (𝐵 ↾ 𝐶) = (𝐵 ↾ 𝐷) |
5 | 2, 4 | eqtri 2103 | 1 ⊢ (𝐴 ↾ 𝐶) = (𝐵 ↾ 𝐷) |
Colors of variables: wff set class |
Syntax hints: = wceq 1285 ↾ cres 4393 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2065 |
This theorem depends on definitions: df-bi 115 df-tru 1288 df-nf 1391 df-sb 1688 df-clab 2070 df-cleq 2076 df-clel 2079 df-nfc 2212 df-v 2612 df-in 2988 df-opab 3860 df-xp 4397 df-res 4403 |
This theorem is referenced by: cnvresid 5024 |
Copyright terms: Public domain | W3C validator |