Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  resqrexlemcalc1 GIF version

Theorem resqrexlemcalc1 10038
 Description: Lemma for resqrex 10050. Some of the calculations involved in showing that the sequence converges. (Contributed by Mario Carneiro and Jim Kingdon, 29-Jul-2021.)
Hypotheses
Ref Expression
resqrexlemex.seq 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}), ℝ+)
resqrexlemex.a (𝜑𝐴 ∈ ℝ)
resqrexlemex.agt0 (𝜑 → 0 ≤ 𝐴)
Assertion
Ref Expression
resqrexlemcalc1 ((𝜑𝑁 ∈ ℕ) → (((𝐹‘(𝑁 + 1))↑2) − 𝐴) = (((((𝐹𝑁)↑2) − 𝐴)↑2) / (4 · ((𝐹𝑁)↑2))))
Distinct variable groups:   𝑦,𝐴,𝑧   𝜑,𝑦,𝑧
Allowed substitution hints:   𝐹(𝑦,𝑧)   𝑁(𝑦,𝑧)

Proof of Theorem resqrexlemcalc1
StepHypRef Expression
1 resqrexlemex.seq . . . . . . . 8 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}), ℝ+)
2 resqrexlemex.a . . . . . . . 8 (𝜑𝐴 ∈ ℝ)
3 resqrexlemex.agt0 . . . . . . . 8 (𝜑 → 0 ≤ 𝐴)
41, 2, 3resqrexlemfp1 10033 . . . . . . 7 ((𝜑𝑁 ∈ ℕ) → (𝐹‘(𝑁 + 1)) = (((𝐹𝑁) + (𝐴 / (𝐹𝑁))) / 2))
54oveq1d 5558 . . . . . 6 ((𝜑𝑁 ∈ ℕ) → ((𝐹‘(𝑁 + 1))↑2) = ((((𝐹𝑁) + (𝐴 / (𝐹𝑁))) / 2)↑2))
61, 2, 3resqrexlemf 10031 . . . . . . . . . . 11 (𝜑𝐹:ℕ⟶ℝ+)
76ffvelrnda 5334 . . . . . . . . . 10 ((𝜑𝑁 ∈ ℕ) → (𝐹𝑁) ∈ ℝ+)
87rpred 8854 . . . . . . . . 9 ((𝜑𝑁 ∈ ℕ) → (𝐹𝑁) ∈ ℝ)
92adantr 270 . . . . . . . . . 10 ((𝜑𝑁 ∈ ℕ) → 𝐴 ∈ ℝ)
109, 7rerpdivcld 8886 . . . . . . . . 9 ((𝜑𝑁 ∈ ℕ) → (𝐴 / (𝐹𝑁)) ∈ ℝ)
118, 10readdcld 7210 . . . . . . . 8 ((𝜑𝑁 ∈ ℕ) → ((𝐹𝑁) + (𝐴 / (𝐹𝑁))) ∈ ℝ)
1211recnd 7209 . . . . . . 7 ((𝜑𝑁 ∈ ℕ) → ((𝐹𝑁) + (𝐴 / (𝐹𝑁))) ∈ ℂ)
13 2cnd 8179 . . . . . . 7 ((𝜑𝑁 ∈ ℕ) → 2 ∈ ℂ)
14 2ap0 8199 . . . . . . . 8 2 # 0
1514a1i 9 . . . . . . 7 ((𝜑𝑁 ∈ ℕ) → 2 # 0)
1612, 13, 15sqdivapd 9715 . . . . . 6 ((𝜑𝑁 ∈ ℕ) → ((((𝐹𝑁) + (𝐴 / (𝐹𝑁))) / 2)↑2) = ((((𝐹𝑁) + (𝐴 / (𝐹𝑁)))↑2) / (2↑2)))
175, 16eqtrd 2114 . . . . 5 ((𝜑𝑁 ∈ ℕ) → ((𝐹‘(𝑁 + 1))↑2) = ((((𝐹𝑁) + (𝐴 / (𝐹𝑁)))↑2) / (2↑2)))
18 sq2 9668 . . . . . 6 (2↑2) = 4
1918oveq2i 5554 . . . . 5 ((((𝐹𝑁) + (𝐴 / (𝐹𝑁)))↑2) / (2↑2)) = ((((𝐹𝑁) + (𝐴 / (𝐹𝑁)))↑2) / 4)
2017, 19syl6eq 2130 . . . 4 ((𝜑𝑁 ∈ ℕ) → ((𝐹‘(𝑁 + 1))↑2) = ((((𝐹𝑁) + (𝐴 / (𝐹𝑁)))↑2) / 4))
219recnd 7209 . . . . . 6 ((𝜑𝑁 ∈ ℕ) → 𝐴 ∈ ℂ)
22 4cn 8184 . . . . . . 7 4 ∈ ℂ
2322a1i 9 . . . . . 6 ((𝜑𝑁 ∈ ℕ) → 4 ∈ ℂ)
24 4re 8183 . . . . . . . 8 4 ∈ ℝ
2524a1i 9 . . . . . . 7 ((𝜑𝑁 ∈ ℕ) → 4 ∈ ℝ)
26 4pos 8203 . . . . . . . 8 0 < 4
2726a1i 9 . . . . . . 7 ((𝜑𝑁 ∈ ℕ) → 0 < 4)
2825, 27gt0ap0d 7795 . . . . . 6 ((𝜑𝑁 ∈ ℕ) → 4 # 0)
2921, 23, 28divcanap3d 7949 . . . . 5 ((𝜑𝑁 ∈ ℕ) → ((4 · 𝐴) / 4) = 𝐴)
3029eqcomd 2087 . . . 4 ((𝜑𝑁 ∈ ℕ) → 𝐴 = ((4 · 𝐴) / 4))
3120, 30oveq12d 5561 . . 3 ((𝜑𝑁 ∈ ℕ) → (((𝐹‘(𝑁 + 1))↑2) − 𝐴) = (((((𝐹𝑁) + (𝐴 / (𝐹𝑁)))↑2) / 4) − ((4 · 𝐴) / 4)))
3212sqcld 9700 . . . 4 ((𝜑𝑁 ∈ ℕ) → (((𝐹𝑁) + (𝐴 / (𝐹𝑁)))↑2) ∈ ℂ)
3323, 21mulcld 7201 . . . 4 ((𝜑𝑁 ∈ ℕ) → (4 · 𝐴) ∈ ℂ)
3432, 33, 23, 28divsubdirapd 7983 . . 3 ((𝜑𝑁 ∈ ℕ) → (((((𝐹𝑁) + (𝐴 / (𝐹𝑁)))↑2) − (4 · 𝐴)) / 4) = (((((𝐹𝑁) + (𝐴 / (𝐹𝑁)))↑2) / 4) − ((4 · 𝐴) / 4)))
3531, 34eqtr4d 2117 . 2 ((𝜑𝑁 ∈ ℕ) → (((𝐹‘(𝑁 + 1))↑2) − 𝐴) = (((((𝐹𝑁) + (𝐴 / (𝐹𝑁)))↑2) − (4 · 𝐴)) / 4))
368recnd 7209 . . . . . . . . 9 ((𝜑𝑁 ∈ ℕ) → (𝐹𝑁) ∈ ℂ)
3736sqcld 9700 . . . . . . . 8 ((𝜑𝑁 ∈ ℕ) → ((𝐹𝑁)↑2) ∈ ℂ)
3813, 21mulcld 7201 . . . . . . . 8 ((𝜑𝑁 ∈ ℕ) → (2 · 𝐴) ∈ ℂ)
3937, 38, 33addsubassd 7506 . . . . . . 7 ((𝜑𝑁 ∈ ℕ) → ((((𝐹𝑁)↑2) + (2 · 𝐴)) − (4 · 𝐴)) = (((𝐹𝑁)↑2) + ((2 · 𝐴) − (4 · 𝐴))))
40 2cn 8177 . . . . . . . . . . . 12 2 ∈ ℂ
4122, 40negsubdi2i 7461 . . . . . . . . . . 11 -(4 − 2) = (2 − 4)
42 2p2e4 8226 . . . . . . . . . . . . . 14 (2 + 2) = 4
4342oveq1i 5553 . . . . . . . . . . . . 13 ((2 + 2) − 2) = (4 − 2)
4440, 40pncan3oi 7391 . . . . . . . . . . . . 13 ((2 + 2) − 2) = 2
4543, 44eqtr3i 2104 . . . . . . . . . . . 12 (4 − 2) = 2
4645negeqi 7369 . . . . . . . . . . 11 -(4 − 2) = -2
4741, 46eqtr3i 2104 . . . . . . . . . 10 (2 − 4) = -2
4847oveq1i 5553 . . . . . . . . 9 ((2 − 4) · 𝐴) = (-2 · 𝐴)
4913, 23, 21subdird 7586 . . . . . . . . 9 ((𝜑𝑁 ∈ ℕ) → ((2 − 4) · 𝐴) = ((2 · 𝐴) − (4 · 𝐴)))
5013, 21mulneg1d 7582 . . . . . . . . 9 ((𝜑𝑁 ∈ ℕ) → (-2 · 𝐴) = -(2 · 𝐴))
5148, 49, 503eqtr3a 2138 . . . . . . . 8 ((𝜑𝑁 ∈ ℕ) → ((2 · 𝐴) − (4 · 𝐴)) = -(2 · 𝐴))
5251oveq2d 5559 . . . . . . 7 ((𝜑𝑁 ∈ ℕ) → (((𝐹𝑁)↑2) + ((2 · 𝐴) − (4 · 𝐴))) = (((𝐹𝑁)↑2) + -(2 · 𝐴)))
5337, 38negsubd 7492 . . . . . . 7 ((𝜑𝑁 ∈ ℕ) → (((𝐹𝑁)↑2) + -(2 · 𝐴)) = (((𝐹𝑁)↑2) − (2 · 𝐴)))
5439, 52, 533eqtrd 2118 . . . . . 6 ((𝜑𝑁 ∈ ℕ) → ((((𝐹𝑁)↑2) + (2 · 𝐴)) − (4 · 𝐴)) = (((𝐹𝑁)↑2) − (2 · 𝐴)))
5554oveq1d 5558 . . . . 5 ((𝜑𝑁 ∈ ℕ) → (((((𝐹𝑁)↑2) + (2 · 𝐴)) − (4 · 𝐴)) + ((𝐴 / (𝐹𝑁))↑2)) = ((((𝐹𝑁)↑2) − (2 · 𝐴)) + ((𝐴 / (𝐹𝑁))↑2)))
5610recnd 7209 . . . . . . . . 9 ((𝜑𝑁 ∈ ℕ) → (𝐴 / (𝐹𝑁)) ∈ ℂ)
57 binom2 9682 . . . . . . . . 9 (((𝐹𝑁) ∈ ℂ ∧ (𝐴 / (𝐹𝑁)) ∈ ℂ) → (((𝐹𝑁) + (𝐴 / (𝐹𝑁)))↑2) = ((((𝐹𝑁)↑2) + (2 · ((𝐹𝑁) · (𝐴 / (𝐹𝑁))))) + ((𝐴 / (𝐹𝑁))↑2)))
5836, 56, 57syl2anc 403 . . . . . . . 8 ((𝜑𝑁 ∈ ℕ) → (((𝐹𝑁) + (𝐴 / (𝐹𝑁)))↑2) = ((((𝐹𝑁)↑2) + (2 · ((𝐹𝑁) · (𝐴 / (𝐹𝑁))))) + ((𝐴 / (𝐹𝑁))↑2)))
597rpap0d 8860 . . . . . . . . . . . 12 ((𝜑𝑁 ∈ ℕ) → (𝐹𝑁) # 0)
6021, 36, 59divcanap2d 7946 . . . . . . . . . . 11 ((𝜑𝑁 ∈ ℕ) → ((𝐹𝑁) · (𝐴 / (𝐹𝑁))) = 𝐴)
6160oveq2d 5559 . . . . . . . . . 10 ((𝜑𝑁 ∈ ℕ) → (2 · ((𝐹𝑁) · (𝐴 / (𝐹𝑁)))) = (2 · 𝐴))
6261oveq2d 5559 . . . . . . . . 9 ((𝜑𝑁 ∈ ℕ) → (((𝐹𝑁)↑2) + (2 · ((𝐹𝑁) · (𝐴 / (𝐹𝑁))))) = (((𝐹𝑁)↑2) + (2 · 𝐴)))
6362oveq1d 5558 . . . . . . . 8 ((𝜑𝑁 ∈ ℕ) → ((((𝐹𝑁)↑2) + (2 · ((𝐹𝑁) · (𝐴 / (𝐹𝑁))))) + ((𝐴 / (𝐹𝑁))↑2)) = ((((𝐹𝑁)↑2) + (2 · 𝐴)) + ((𝐴 / (𝐹𝑁))↑2)))
6458, 63eqtrd 2114 . . . . . . 7 ((𝜑𝑁 ∈ ℕ) → (((𝐹𝑁) + (𝐴 / (𝐹𝑁)))↑2) = ((((𝐹𝑁)↑2) + (2 · 𝐴)) + ((𝐴 / (𝐹𝑁))↑2)))
6564oveq1d 5558 . . . . . 6 ((𝜑𝑁 ∈ ℕ) → ((((𝐹𝑁) + (𝐴 / (𝐹𝑁)))↑2) − (4 · 𝐴)) = (((((𝐹𝑁)↑2) + (2 · 𝐴)) + ((𝐴 / (𝐹𝑁))↑2)) − (4 · 𝐴)))
6637, 38addcld 7200 . . . . . . 7 ((𝜑𝑁 ∈ ℕ) → (((𝐹𝑁)↑2) + (2 · 𝐴)) ∈ ℂ)
6756sqcld 9700 . . . . . . 7 ((𝜑𝑁 ∈ ℕ) → ((𝐴 / (𝐹𝑁))↑2) ∈ ℂ)
6866, 67, 33addsubd 7507 . . . . . 6 ((𝜑𝑁 ∈ ℕ) → (((((𝐹𝑁)↑2) + (2 · 𝐴)) + ((𝐴 / (𝐹𝑁))↑2)) − (4 · 𝐴)) = (((((𝐹𝑁)↑2) + (2 · 𝐴)) − (4 · 𝐴)) + ((𝐴 / (𝐹𝑁))↑2)))
6965, 68eqtrd 2114 . . . . 5 ((𝜑𝑁 ∈ ℕ) → ((((𝐹𝑁) + (𝐴 / (𝐹𝑁)))↑2) − (4 · 𝐴)) = (((((𝐹𝑁)↑2) + (2 · 𝐴)) − (4 · 𝐴)) + ((𝐴 / (𝐹𝑁))↑2)))
7037, 38subcld 7486 . . . . . . 7 ((𝜑𝑁 ∈ ℕ) → (((𝐹𝑁)↑2) − (2 · 𝐴)) ∈ ℂ)
7170, 67addcld 7200 . . . . . 6 ((𝜑𝑁 ∈ ℕ) → ((((𝐹𝑁)↑2) − (2 · 𝐴)) + ((𝐴 / (𝐹𝑁))↑2)) ∈ ℂ)
72 2z 8460 . . . . . . . . 9 2 ∈ ℤ
7372a1i 9 . . . . . . . 8 ((𝜑𝑁 ∈ ℕ) → 2 ∈ ℤ)
747, 73rpexpcld 9726 . . . . . . 7 ((𝜑𝑁 ∈ ℕ) → ((𝐹𝑁)↑2) ∈ ℝ+)
7574rpap0d 8860 . . . . . 6 ((𝜑𝑁 ∈ ℕ) → ((𝐹𝑁)↑2) # 0)
7671, 37, 75divcanap4d 7950 . . . . 5 ((𝜑𝑁 ∈ ℕ) → ((((((𝐹𝑁)↑2) − (2 · 𝐴)) + ((𝐴 / (𝐹𝑁))↑2)) · ((𝐹𝑁)↑2)) / ((𝐹𝑁)↑2)) = ((((𝐹𝑁)↑2) − (2 · 𝐴)) + ((𝐴 / (𝐹𝑁))↑2)))
7755, 69, 763eqtr4d 2124 . . . 4 ((𝜑𝑁 ∈ ℕ) → ((((𝐹𝑁) + (𝐴 / (𝐹𝑁)))↑2) − (4 · 𝐴)) = ((((((𝐹𝑁)↑2) − (2 · 𝐴)) + ((𝐴 / (𝐹𝑁))↑2)) · ((𝐹𝑁)↑2)) / ((𝐹𝑁)↑2)))
7837, 38, 37subdird 7586 . . . . . . . 8 ((𝜑𝑁 ∈ ℕ) → ((((𝐹𝑁)↑2) − (2 · 𝐴)) · ((𝐹𝑁)↑2)) = ((((𝐹𝑁)↑2) · ((𝐹𝑁)↑2)) − ((2 · 𝐴) · ((𝐹𝑁)↑2))))
7937sqvald 9699 . . . . . . . . 9 ((𝜑𝑁 ∈ ℕ) → (((𝐹𝑁)↑2)↑2) = (((𝐹𝑁)↑2) · ((𝐹𝑁)↑2)))
8013, 21, 37mul32d 7328 . . . . . . . . . 10 ((𝜑𝑁 ∈ ℕ) → ((2 · 𝐴) · ((𝐹𝑁)↑2)) = ((2 · ((𝐹𝑁)↑2)) · 𝐴))
8113, 37, 21mulassd 7204 . . . . . . . . . 10 ((𝜑𝑁 ∈ ℕ) → ((2 · ((𝐹𝑁)↑2)) · 𝐴) = (2 · (((𝐹𝑁)↑2) · 𝐴)))
8280, 81eqtr2d 2115 . . . . . . . . 9 ((𝜑𝑁 ∈ ℕ) → (2 · (((𝐹𝑁)↑2) · 𝐴)) = ((2 · 𝐴) · ((𝐹𝑁)↑2)))
8379, 82oveq12d 5561 . . . . . . . 8 ((𝜑𝑁 ∈ ℕ) → ((((𝐹𝑁)↑2)↑2) − (2 · (((𝐹𝑁)↑2) · 𝐴))) = ((((𝐹𝑁)↑2) · ((𝐹𝑁)↑2)) − ((2 · 𝐴) · ((𝐹𝑁)↑2))))
8478, 83eqtr4d 2117 . . . . . . 7 ((𝜑𝑁 ∈ ℕ) → ((((𝐹𝑁)↑2) − (2 · 𝐴)) · ((𝐹𝑁)↑2)) = ((((𝐹𝑁)↑2)↑2) − (2 · (((𝐹𝑁)↑2) · 𝐴))))
8521, 36, 59sqdivapd 9715 . . . . . . . . 9 ((𝜑𝑁 ∈ ℕ) → ((𝐴 / (𝐹𝑁))↑2) = ((𝐴↑2) / ((𝐹𝑁)↑2)))
8685oveq1d 5558 . . . . . . . 8 ((𝜑𝑁 ∈ ℕ) → (((𝐴 / (𝐹𝑁))↑2) · ((𝐹𝑁)↑2)) = (((𝐴↑2) / ((𝐹𝑁)↑2)) · ((𝐹𝑁)↑2)))
8721sqcld 9700 . . . . . . . . 9 ((𝜑𝑁 ∈ ℕ) → (𝐴↑2) ∈ ℂ)
8887, 37, 75divcanap1d 7945 . . . . . . . 8 ((𝜑𝑁 ∈ ℕ) → (((𝐴↑2) / ((𝐹𝑁)↑2)) · ((𝐹𝑁)↑2)) = (𝐴↑2))
8986, 88eqtrd 2114 . . . . . . 7 ((𝜑𝑁 ∈ ℕ) → (((𝐴 / (𝐹𝑁))↑2) · ((𝐹𝑁)↑2)) = (𝐴↑2))
9084, 89oveq12d 5561 . . . . . 6 ((𝜑𝑁 ∈ ℕ) → (((((𝐹𝑁)↑2) − (2 · 𝐴)) · ((𝐹𝑁)↑2)) + (((𝐴 / (𝐹𝑁))↑2) · ((𝐹𝑁)↑2))) = (((((𝐹𝑁)↑2)↑2) − (2 · (((𝐹𝑁)↑2) · 𝐴))) + (𝐴↑2)))
9170, 67, 37adddird 7206 . . . . . 6 ((𝜑𝑁 ∈ ℕ) → (((((𝐹𝑁)↑2) − (2 · 𝐴)) + ((𝐴 / (𝐹𝑁))↑2)) · ((𝐹𝑁)↑2)) = (((((𝐹𝑁)↑2) − (2 · 𝐴)) · ((𝐹𝑁)↑2)) + (((𝐴 / (𝐹𝑁))↑2) · ((𝐹𝑁)↑2))))
92 binom2sub 9684 . . . . . . 7 ((((𝐹𝑁)↑2) ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((((𝐹𝑁)↑2) − 𝐴)↑2) = (((((𝐹𝑁)↑2)↑2) − (2 · (((𝐹𝑁)↑2) · 𝐴))) + (𝐴↑2)))
9337, 21, 92syl2anc 403 . . . . . 6 ((𝜑𝑁 ∈ ℕ) → ((((𝐹𝑁)↑2) − 𝐴)↑2) = (((((𝐹𝑁)↑2)↑2) − (2 · (((𝐹𝑁)↑2) · 𝐴))) + (𝐴↑2)))
9490, 91, 933eqtr4d 2124 . . . . 5 ((𝜑𝑁 ∈ ℕ) → (((((𝐹𝑁)↑2) − (2 · 𝐴)) + ((𝐴 / (𝐹𝑁))↑2)) · ((𝐹𝑁)↑2)) = ((((𝐹𝑁)↑2) − 𝐴)↑2))
9594oveq1d 5558 . . . 4 ((𝜑𝑁 ∈ ℕ) → ((((((𝐹𝑁)↑2) − (2 · 𝐴)) + ((𝐴 / (𝐹𝑁))↑2)) · ((𝐹𝑁)↑2)) / ((𝐹𝑁)↑2)) = (((((𝐹𝑁)↑2) − 𝐴)↑2) / ((𝐹𝑁)↑2)))
9677, 95eqtrd 2114 . . 3 ((𝜑𝑁 ∈ ℕ) → ((((𝐹𝑁) + (𝐴 / (𝐹𝑁)))↑2) − (4 · 𝐴)) = (((((𝐹𝑁)↑2) − 𝐴)↑2) / ((𝐹𝑁)↑2)))
9796oveq1d 5558 . 2 ((𝜑𝑁 ∈ ℕ) → (((((𝐹𝑁) + (𝐴 / (𝐹𝑁)))↑2) − (4 · 𝐴)) / 4) = ((((((𝐹𝑁)↑2) − 𝐴)↑2) / ((𝐹𝑁)↑2)) / 4))
9837, 21subcld 7486 . . . . 5 ((𝜑𝑁 ∈ ℕ) → (((𝐹𝑁)↑2) − 𝐴) ∈ ℂ)
9998sqcld 9700 . . . 4 ((𝜑𝑁 ∈ ℕ) → ((((𝐹𝑁)↑2) − 𝐴)↑2) ∈ ℂ)
10099, 37, 23, 75, 28divdivap1d 7975 . . 3 ((𝜑𝑁 ∈ ℕ) → ((((((𝐹𝑁)↑2) − 𝐴)↑2) / ((𝐹𝑁)↑2)) / 4) = (((((𝐹𝑁)↑2) − 𝐴)↑2) / (((𝐹𝑁)↑2) · 4)))
10137, 23mulcomd 7202 . . . 4 ((𝜑𝑁 ∈ ℕ) → (((𝐹𝑁)↑2) · 4) = (4 · ((𝐹𝑁)↑2)))
102101oveq2d 5559 . . 3 ((𝜑𝑁 ∈ ℕ) → (((((𝐹𝑁)↑2) − 𝐴)↑2) / (((𝐹𝑁)↑2) · 4)) = (((((𝐹𝑁)↑2) − 𝐴)↑2) / (4 · ((𝐹𝑁)↑2))))
103100, 102eqtrd 2114 . 2 ((𝜑𝑁 ∈ ℕ) → ((((((𝐹𝑁)↑2) − 𝐴)↑2) / ((𝐹𝑁)↑2)) / 4) = (((((𝐹𝑁)↑2) − 𝐴)↑2) / (4 · ((𝐹𝑁)↑2))))
10435, 97, 1033eqtrd 2118 1 ((𝜑𝑁 ∈ ℕ) → (((𝐹‘(𝑁 + 1))↑2) − 𝐴) = (((((𝐹𝑁)↑2) − 𝐴)↑2) / (4 · ((𝐹𝑁)↑2))))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 102   = wceq 1285   ∈ wcel 1434  {csn 3406   class class class wbr 3793   × cxp 4369  ‘cfv 4932  (class class class)co 5543   ↦ cmpt2 5545  ℂcc 7041  ℝcr 7042  0cc0 7043  1c1 7044   + caddc 7046   · cmul 7048   < clt 7215   ≤ cle 7216   − cmin 7346  -cneg 7347   # cap 7748   / cdiv 7827  ℕcn 8106  2c2 8156  4c4 8158  ℤcz 8432  ℝ+crp 8815  seqcseq 9521  ↑cexp 9572 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064  ax-coll 3901  ax-sep 3904  ax-nul 3912  ax-pow 3956  ax-pr 3972  ax-un 4196  ax-setind 4288  ax-iinf 4337  ax-cnex 7129  ax-resscn 7130  ax-1cn 7131  ax-1re 7132  ax-icn 7133  ax-addcl 7134  ax-addrcl 7135  ax-mulcl 7136  ax-mulrcl 7137  ax-addcom 7138  ax-mulcom 7139  ax-addass 7140  ax-mulass 7141  ax-distr 7142  ax-i2m1 7143  ax-0lt1 7144  ax-1rid 7145  ax-0id 7146  ax-rnegex 7147  ax-precex 7148  ax-cnre 7149  ax-pre-ltirr 7150  ax-pre-ltwlin 7151  ax-pre-lttrn 7152  ax-pre-apti 7153  ax-pre-ltadd 7154  ax-pre-mulgt0 7155  ax-pre-mulext 7156 This theorem depends on definitions:  df-bi 115  df-dc 777  df-3or 921  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1687  df-eu 1945  df-mo 1946  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-ne 2247  df-nel 2341  df-ral 2354  df-rex 2355  df-reu 2356  df-rmo 2357  df-rab 2358  df-v 2604  df-sbc 2817  df-csb 2910  df-dif 2976  df-un 2978  df-in 2980  df-ss 2987  df-nul 3259  df-if 3360  df-pw 3392  df-sn 3412  df-pr 3413  df-op 3415  df-uni 3610  df-int 3645  df-iun 3688  df-br 3794  df-opab 3848  df-mpt 3849  df-tr 3884  df-id 4056  df-po 4059  df-iso 4060  df-iord 4129  df-on 4131  df-ilim 4132  df-suc 4134  df-iom 4340  df-xp 4377  df-rel 4378  df-cnv 4379  df-co 4380  df-dm 4381  df-rn 4382  df-res 4383  df-ima 4384  df-iota 4897  df-fun 4934  df-fn 4935  df-f 4936  df-f1 4937  df-fo 4938  df-f1o 4939  df-fv 4940  df-riota 5499  df-ov 5546  df-oprab 5547  df-mpt2 5548  df-1st 5798  df-2nd 5799  df-recs 5954  df-frec 6040  df-pnf 7217  df-mnf 7218  df-xr 7219  df-ltxr 7220  df-le 7221  df-sub 7348  df-neg 7349  df-reap 7742  df-ap 7749  df-div 7828  df-inn 8107  df-2 8165  df-3 8166  df-4 8167  df-n0 8356  df-z 8433  df-uz 8701  df-rp 8816  df-iseq 9522  df-iexp 9573 This theorem is referenced by:  resqrexlemcalc2  10039
 Copyright terms: Public domain W3C validator