ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resqrexlemdecn GIF version

Theorem resqrexlemdecn 9831
Description: Lemma for resqrex 9845. The sequence is decreasing. (Contributed by Jim Kingdon, 31-Jul-2021.)
Hypotheses
Ref Expression
resqrexlemex.seq 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}), ℝ+)
resqrexlemex.a (𝜑𝐴 ∈ ℝ)
resqrexlemex.agt0 (𝜑 → 0 ≤ 𝐴)
resqrexlemdecn.n (𝜑𝑁 ∈ ℕ)
resqrexlemdecn.m (𝜑𝑀 ∈ ℕ)
resqrexlemdecn.nm (𝜑𝑁 < 𝑀)
Assertion
Ref Expression
resqrexlemdecn (𝜑 → (𝐹𝑀) < (𝐹𝑁))
Distinct variable groups:   𝑦,𝐴,𝑧   𝜑,𝑦,𝑧
Allowed substitution hints:   𝐹(𝑦,𝑧)   𝑀(𝑦,𝑧)   𝑁(𝑦,𝑧)

Proof of Theorem resqrexlemdecn
Dummy variables 𝑘 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 resqrexlemdecn.n . . . . 5 (𝜑𝑁 ∈ ℕ)
21nnzd 8417 . . . 4 (𝜑𝑁 ∈ ℤ)
32peano2zd 8421 . . 3 (𝜑 → (𝑁 + 1) ∈ ℤ)
4 resqrexlemdecn.m . . . 4 (𝜑𝑀 ∈ ℕ)
54nnzd 8417 . . 3 (𝜑𝑀 ∈ ℤ)
6 resqrexlemdecn.nm . . . 4 (𝜑𝑁 < 𝑀)
7 nnltp1le 8361 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) → (𝑁 < 𝑀 ↔ (𝑁 + 1) ≤ 𝑀))
81, 4, 7syl2anc 397 . . . 4 (𝜑 → (𝑁 < 𝑀 ↔ (𝑁 + 1) ≤ 𝑀))
96, 8mpbid 139 . . 3 (𝜑 → (𝑁 + 1) ≤ 𝑀)
10 fveq2 5205 . . . . . 6 (𝑤 = (𝑁 + 1) → (𝐹𝑤) = (𝐹‘(𝑁 + 1)))
1110breq1d 3801 . . . . 5 (𝑤 = (𝑁 + 1) → ((𝐹𝑤) < (𝐹𝑁) ↔ (𝐹‘(𝑁 + 1)) < (𝐹𝑁)))
1211imbi2d 223 . . . 4 (𝑤 = (𝑁 + 1) → ((𝜑 → (𝐹𝑤) < (𝐹𝑁)) ↔ (𝜑 → (𝐹‘(𝑁 + 1)) < (𝐹𝑁))))
13 fveq2 5205 . . . . . 6 (𝑤 = 𝑘 → (𝐹𝑤) = (𝐹𝑘))
1413breq1d 3801 . . . . 5 (𝑤 = 𝑘 → ((𝐹𝑤) < (𝐹𝑁) ↔ (𝐹𝑘) < (𝐹𝑁)))
1514imbi2d 223 . . . 4 (𝑤 = 𝑘 → ((𝜑 → (𝐹𝑤) < (𝐹𝑁)) ↔ (𝜑 → (𝐹𝑘) < (𝐹𝑁))))
16 fveq2 5205 . . . . . 6 (𝑤 = (𝑘 + 1) → (𝐹𝑤) = (𝐹‘(𝑘 + 1)))
1716breq1d 3801 . . . . 5 (𝑤 = (𝑘 + 1) → ((𝐹𝑤) < (𝐹𝑁) ↔ (𝐹‘(𝑘 + 1)) < (𝐹𝑁)))
1817imbi2d 223 . . . 4 (𝑤 = (𝑘 + 1) → ((𝜑 → (𝐹𝑤) < (𝐹𝑁)) ↔ (𝜑 → (𝐹‘(𝑘 + 1)) < (𝐹𝑁))))
19 fveq2 5205 . . . . . 6 (𝑤 = 𝑀 → (𝐹𝑤) = (𝐹𝑀))
2019breq1d 3801 . . . . 5 (𝑤 = 𝑀 → ((𝐹𝑤) < (𝐹𝑁) ↔ (𝐹𝑀) < (𝐹𝑁)))
2120imbi2d 223 . . . 4 (𝑤 = 𝑀 → ((𝜑 → (𝐹𝑤) < (𝐹𝑁)) ↔ (𝜑 → (𝐹𝑀) < (𝐹𝑁))))
22 resqrexlemex.seq . . . . . . 7 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}), ℝ+)
23 resqrexlemex.a . . . . . . 7 (𝜑𝐴 ∈ ℝ)
24 resqrexlemex.agt0 . . . . . . 7 (𝜑 → 0 ≤ 𝐴)
2522, 23, 24resqrexlemdec 9830 . . . . . 6 ((𝜑𝑁 ∈ ℕ) → (𝐹‘(𝑁 + 1)) < (𝐹𝑁))
261, 25mpdan 406 . . . . 5 (𝜑 → (𝐹‘(𝑁 + 1)) < (𝐹𝑁))
2726a1i 9 . . . 4 ((𝑁 + 1) ∈ ℤ → (𝜑 → (𝐹‘(𝑁 + 1)) < (𝐹𝑁)))
2822, 23, 24resqrexlemf 9826 . . . . . . . . . . 11 (𝜑𝐹:ℕ⟶ℝ+)
2928ad2antrr 465 . . . . . . . . . 10 (((𝜑 ∧ ((𝑁 + 1) ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ (𝑁 + 1) ≤ 𝑘)) ∧ (𝐹𝑘) < (𝐹𝑁)) → 𝐹:ℕ⟶ℝ+)
30 simplr2 958 . . . . . . . . . . . 12 (((𝜑 ∧ ((𝑁 + 1) ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ (𝑁 + 1) ≤ 𝑘)) ∧ (𝐹𝑘) < (𝐹𝑁)) → 𝑘 ∈ ℤ)
31 1red 7099 . . . . . . . . . . . . 13 (((𝜑 ∧ ((𝑁 + 1) ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ (𝑁 + 1) ≤ 𝑘)) ∧ (𝐹𝑘) < (𝐹𝑁)) → 1 ∈ ℝ)
323ad2antrr 465 . . . . . . . . . . . . . 14 (((𝜑 ∧ ((𝑁 + 1) ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ (𝑁 + 1) ≤ 𝑘)) ∧ (𝐹𝑘) < (𝐹𝑁)) → (𝑁 + 1) ∈ ℤ)
3332zred 8418 . . . . . . . . . . . . 13 (((𝜑 ∧ ((𝑁 + 1) ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ (𝑁 + 1) ≤ 𝑘)) ∧ (𝐹𝑘) < (𝐹𝑁)) → (𝑁 + 1) ∈ ℝ)
3430zred 8418 . . . . . . . . . . . . 13 (((𝜑 ∧ ((𝑁 + 1) ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ (𝑁 + 1) ≤ 𝑘)) ∧ (𝐹𝑘) < (𝐹𝑁)) → 𝑘 ∈ ℝ)
351nnred 8002 . . . . . . . . . . . . . . . 16 (𝜑𝑁 ∈ ℝ)
361nngt0d 8032 . . . . . . . . . . . . . . . 16 (𝜑 → 0 < 𝑁)
37 0re 7084 . . . . . . . . . . . . . . . . 17 0 ∈ ℝ
38 ltle 7163 . . . . . . . . . . . . . . . . 17 ((0 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (0 < 𝑁 → 0 ≤ 𝑁))
3937, 38mpan 408 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℝ → (0 < 𝑁 → 0 ≤ 𝑁))
4035, 36, 39sylc 60 . . . . . . . . . . . . . . 15 (𝜑 → 0 ≤ 𝑁)
41 1red 7099 . . . . . . . . . . . . . . . 16 (𝜑 → 1 ∈ ℝ)
4241, 35addge02d 7598 . . . . . . . . . . . . . . 15 (𝜑 → (0 ≤ 𝑁 ↔ 1 ≤ (𝑁 + 1)))
4340, 42mpbid 139 . . . . . . . . . . . . . 14 (𝜑 → 1 ≤ (𝑁 + 1))
4443ad2antrr 465 . . . . . . . . . . . . 13 (((𝜑 ∧ ((𝑁 + 1) ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ (𝑁 + 1) ≤ 𝑘)) ∧ (𝐹𝑘) < (𝐹𝑁)) → 1 ≤ (𝑁 + 1))
45 simplr3 959 . . . . . . . . . . . . 13 (((𝜑 ∧ ((𝑁 + 1) ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ (𝑁 + 1) ≤ 𝑘)) ∧ (𝐹𝑘) < (𝐹𝑁)) → (𝑁 + 1) ≤ 𝑘)
4631, 33, 34, 44, 45letrd 7198 . . . . . . . . . . . 12 (((𝜑 ∧ ((𝑁 + 1) ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ (𝑁 + 1) ≤ 𝑘)) ∧ (𝐹𝑘) < (𝐹𝑁)) → 1 ≤ 𝑘)
47 elnnz1 8324 . . . . . . . . . . . 12 (𝑘 ∈ ℕ ↔ (𝑘 ∈ ℤ ∧ 1 ≤ 𝑘))
4830, 46, 47sylanbrc 402 . . . . . . . . . . 11 (((𝜑 ∧ ((𝑁 + 1) ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ (𝑁 + 1) ≤ 𝑘)) ∧ (𝐹𝑘) < (𝐹𝑁)) → 𝑘 ∈ ℕ)
4948peano2nnd 8004 . . . . . . . . . 10 (((𝜑 ∧ ((𝑁 + 1) ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ (𝑁 + 1) ≤ 𝑘)) ∧ (𝐹𝑘) < (𝐹𝑁)) → (𝑘 + 1) ∈ ℕ)
5029, 49ffvelrnd 5330 . . . . . . . . 9 (((𝜑 ∧ ((𝑁 + 1) ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ (𝑁 + 1) ≤ 𝑘)) ∧ (𝐹𝑘) < (𝐹𝑁)) → (𝐹‘(𝑘 + 1)) ∈ ℝ+)
5150rpred 8719 . . . . . . . 8 (((𝜑 ∧ ((𝑁 + 1) ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ (𝑁 + 1) ≤ 𝑘)) ∧ (𝐹𝑘) < (𝐹𝑁)) → (𝐹‘(𝑘 + 1)) ∈ ℝ)
5229, 48ffvelrnd 5330 . . . . . . . . 9 (((𝜑 ∧ ((𝑁 + 1) ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ (𝑁 + 1) ≤ 𝑘)) ∧ (𝐹𝑘) < (𝐹𝑁)) → (𝐹𝑘) ∈ ℝ+)
5352rpred 8719 . . . . . . . 8 (((𝜑 ∧ ((𝑁 + 1) ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ (𝑁 + 1) ≤ 𝑘)) ∧ (𝐹𝑘) < (𝐹𝑁)) → (𝐹𝑘) ∈ ℝ)
541ad2antrr 465 . . . . . . . . . 10 (((𝜑 ∧ ((𝑁 + 1) ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ (𝑁 + 1) ≤ 𝑘)) ∧ (𝐹𝑘) < (𝐹𝑁)) → 𝑁 ∈ ℕ)
5529, 54ffvelrnd 5330 . . . . . . . . 9 (((𝜑 ∧ ((𝑁 + 1) ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ (𝑁 + 1) ≤ 𝑘)) ∧ (𝐹𝑘) < (𝐹𝑁)) → (𝐹𝑁) ∈ ℝ+)
5655rpred 8719 . . . . . . . 8 (((𝜑 ∧ ((𝑁 + 1) ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ (𝑁 + 1) ≤ 𝑘)) ∧ (𝐹𝑘) < (𝐹𝑁)) → (𝐹𝑁) ∈ ℝ)
57 simpll 489 . . . . . . . . 9 (((𝜑 ∧ ((𝑁 + 1) ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ (𝑁 + 1) ≤ 𝑘)) ∧ (𝐹𝑘) < (𝐹𝑁)) → 𝜑)
5822, 23, 24resqrexlemdec 9830 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → (𝐹‘(𝑘 + 1)) < (𝐹𝑘))
5957, 48, 58syl2anc 397 . . . . . . . 8 (((𝜑 ∧ ((𝑁 + 1) ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ (𝑁 + 1) ≤ 𝑘)) ∧ (𝐹𝑘) < (𝐹𝑁)) → (𝐹‘(𝑘 + 1)) < (𝐹𝑘))
60 simpr 107 . . . . . . . 8 (((𝜑 ∧ ((𝑁 + 1) ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ (𝑁 + 1) ≤ 𝑘)) ∧ (𝐹𝑘) < (𝐹𝑁)) → (𝐹𝑘) < (𝐹𝑁))
6151, 53, 56, 59, 60lttrd 7200 . . . . . . 7 (((𝜑 ∧ ((𝑁 + 1) ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ (𝑁 + 1) ≤ 𝑘)) ∧ (𝐹𝑘) < (𝐹𝑁)) → (𝐹‘(𝑘 + 1)) < (𝐹𝑁))
6261ex 112 . . . . . 6 ((𝜑 ∧ ((𝑁 + 1) ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ (𝑁 + 1) ≤ 𝑘)) → ((𝐹𝑘) < (𝐹𝑁) → (𝐹‘(𝑘 + 1)) < (𝐹𝑁)))
6362expcom 113 . . . . 5 (((𝑁 + 1) ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ (𝑁 + 1) ≤ 𝑘) → (𝜑 → ((𝐹𝑘) < (𝐹𝑁) → (𝐹‘(𝑘 + 1)) < (𝐹𝑁))))
6463a2d 26 . . . 4 (((𝑁 + 1) ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ (𝑁 + 1) ≤ 𝑘) → ((𝜑 → (𝐹𝑘) < (𝐹𝑁)) → (𝜑 → (𝐹‘(𝑘 + 1)) < (𝐹𝑁))))
6512, 15, 18, 21, 27, 64uzind 8407 . . 3 (((𝑁 + 1) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ (𝑁 + 1) ≤ 𝑀) → (𝜑 → (𝐹𝑀) < (𝐹𝑁)))
663, 5, 9, 65syl3anc 1146 . 2 (𝜑 → (𝜑 → (𝐹𝑀) < (𝐹𝑁)))
6766pm2.43i 47 1 (𝜑 → (𝐹𝑀) < (𝐹𝑁))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 101  wb 102  w3a 896   = wceq 1259  wcel 1409  {csn 3402   class class class wbr 3791   × cxp 4370  wf 4925  cfv 4929  (class class class)co 5539  cmpt2 5541  cr 6945  0cc0 6946  1c1 6947   + caddc 6949   < clt 7118  cle 7119   / cdiv 7724  cn 7989  2c2 8039  cz 8301  +crp 8680  seqcseq 9369
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-in1 554  ax-in2 555  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-13 1420  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-coll 3899  ax-sep 3902  ax-nul 3910  ax-pow 3954  ax-pr 3971  ax-un 4197  ax-setind 4289  ax-iinf 4338  ax-cnex 7032  ax-resscn 7033  ax-1cn 7034  ax-1re 7035  ax-icn 7036  ax-addcl 7037  ax-addrcl 7038  ax-mulcl 7039  ax-mulrcl 7040  ax-addcom 7041  ax-mulcom 7042  ax-addass 7043  ax-mulass 7044  ax-distr 7045  ax-i2m1 7046  ax-1rid 7048  ax-0id 7049  ax-rnegex 7050  ax-precex 7051  ax-cnre 7052  ax-pre-ltirr 7053  ax-pre-ltwlin 7054  ax-pre-lttrn 7055  ax-pre-apti 7056  ax-pre-ltadd 7057  ax-pre-mulgt0 7058  ax-pre-mulext 7059
This theorem depends on definitions:  df-bi 114  df-dc 754  df-3or 897  df-3an 898  df-tru 1262  df-fal 1265  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ne 2221  df-nel 2315  df-ral 2328  df-rex 2329  df-reu 2330  df-rmo 2331  df-rab 2332  df-v 2576  df-sbc 2787  df-csb 2880  df-dif 2947  df-un 2949  df-in 2951  df-ss 2958  df-nul 3252  df-if 3359  df-pw 3388  df-sn 3408  df-pr 3409  df-op 3411  df-uni 3608  df-int 3643  df-iun 3686  df-br 3792  df-opab 3846  df-mpt 3847  df-tr 3882  df-eprel 4053  df-id 4057  df-po 4060  df-iso 4061  df-iord 4130  df-on 4132  df-suc 4135  df-iom 4341  df-xp 4378  df-rel 4379  df-cnv 4380  df-co 4381  df-dm 4382  df-rn 4383  df-res 4384  df-ima 4385  df-iota 4894  df-fun 4931  df-fn 4932  df-f 4933  df-f1 4934  df-fo 4935  df-f1o 4936  df-fv 4937  df-riota 5495  df-ov 5542  df-oprab 5543  df-mpt2 5544  df-1st 5794  df-2nd 5795  df-recs 5950  df-irdg 5987  df-frec 6008  df-1o 6031  df-2o 6032  df-oadd 6035  df-omul 6036  df-er 6136  df-ec 6138  df-qs 6142  df-ni 6459  df-pli 6460  df-mi 6461  df-lti 6462  df-plpq 6499  df-mpq 6500  df-enq 6502  df-nqqs 6503  df-plqqs 6504  df-mqqs 6505  df-1nqqs 6506  df-rq 6507  df-ltnqqs 6508  df-enq0 6579  df-nq0 6580  df-0nq0 6581  df-plq0 6582  df-mq0 6583  df-inp 6621  df-i1p 6622  df-iplp 6623  df-iltp 6625  df-enr 6868  df-nr 6869  df-ltr 6872  df-0r 6873  df-1r 6874  df-0 6953  df-1 6954  df-r 6956  df-lt 6959  df-pnf 7120  df-mnf 7121  df-xr 7122  df-ltxr 7123  df-le 7124  df-sub 7246  df-neg 7247  df-reap 7639  df-ap 7646  df-div 7725  df-inn 7990  df-2 8048  df-3 8049  df-4 8050  df-n0 8239  df-z 8302  df-uz 8569  df-rp 8681  df-iseq 9370  df-iexp 9414
This theorem is referenced by:  resqrexlemnm  9837  resqrexlemcvg  9838  resqrexlemoverl  9840  resqrexlemglsq  9841
  Copyright terms: Public domain W3C validator