ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resqrexlemgt0 GIF version

Theorem resqrexlemgt0 9846
Description: Lemma for resqrex 9852. A limit is nonnegative. (Contributed by Jim Kingdon, 7-Aug-2021.)
Hypotheses
Ref Expression
resqrexlemex.seq 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}), ℝ+)
resqrexlemex.a (𝜑𝐴 ∈ ℝ)
resqrexlemex.agt0 (𝜑 → 0 ≤ 𝐴)
resqrexlemgt0.rr (𝜑𝐿 ∈ ℝ)
resqrexlemgt0.lim (𝜑 → ∀𝑒 ∈ ℝ+𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝐿 + 𝑒) ∧ 𝐿 < ((𝐹𝑖) + 𝑒)))
Assertion
Ref Expression
resqrexlemgt0 (𝜑 → 0 ≤ 𝐿)
Distinct variable groups:   𝑦,𝐴,𝑧   𝑒,𝐹   𝑒,𝐿,𝑖,𝑗   𝜑,𝑖,𝑗   𝑧,𝑗,𝜑   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑒)   𝐴(𝑒,𝑖,𝑗)   𝐹(𝑦,𝑧,𝑖,𝑗)   𝐿(𝑦,𝑧)

Proof of Theorem resqrexlemgt0
StepHypRef Expression
1 resqrexlemgt0.rr . . . . . . . . 9 (𝜑𝐿 ∈ ℝ)
21adantr 265 . . . . . . . 8 ((𝜑𝐿 < 0) → 𝐿 ∈ ℝ)
32renegcld 7449 . . . . . . 7 ((𝜑𝐿 < 0) → -𝐿 ∈ ℝ)
41lt0neg1d 7580 . . . . . . . 8 (𝜑 → (𝐿 < 0 ↔ 0 < -𝐿))
54biimpa 284 . . . . . . 7 ((𝜑𝐿 < 0) → 0 < -𝐿)
63, 5elrpd 8717 . . . . . 6 ((𝜑𝐿 < 0) → -𝐿 ∈ ℝ+)
7 resqrexlemgt0.lim . . . . . . 7 (𝜑 → ∀𝑒 ∈ ℝ+𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝐿 + 𝑒) ∧ 𝐿 < ((𝐹𝑖) + 𝑒)))
87adantr 265 . . . . . 6 ((𝜑𝐿 < 0) → ∀𝑒 ∈ ℝ+𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝐿 + 𝑒) ∧ 𝐿 < ((𝐹𝑖) + 𝑒)))
9 oveq2 5547 . . . . . . . . . 10 (𝑒 = -𝐿 → (𝐿 + 𝑒) = (𝐿 + -𝐿))
109breq2d 3803 . . . . . . . . 9 (𝑒 = -𝐿 → ((𝐹𝑖) < (𝐿 + 𝑒) ↔ (𝐹𝑖) < (𝐿 + -𝐿)))
11 oveq2 5547 . . . . . . . . . 10 (𝑒 = -𝐿 → ((𝐹𝑖) + 𝑒) = ((𝐹𝑖) + -𝐿))
1211breq2d 3803 . . . . . . . . 9 (𝑒 = -𝐿 → (𝐿 < ((𝐹𝑖) + 𝑒) ↔ 𝐿 < ((𝐹𝑖) + -𝐿)))
1310, 12anbi12d 450 . . . . . . . 8 (𝑒 = -𝐿 → (((𝐹𝑖) < (𝐿 + 𝑒) ∧ 𝐿 < ((𝐹𝑖) + 𝑒)) ↔ ((𝐹𝑖) < (𝐿 + -𝐿) ∧ 𝐿 < ((𝐹𝑖) + -𝐿))))
1413rexralbidv 2367 . . . . . . 7 (𝑒 = -𝐿 → (∃𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝐿 + 𝑒) ∧ 𝐿 < ((𝐹𝑖) + 𝑒)) ↔ ∃𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝐿 + -𝐿) ∧ 𝐿 < ((𝐹𝑖) + -𝐿))))
1514rspcv 2669 . . . . . 6 (-𝐿 ∈ ℝ+ → (∀𝑒 ∈ ℝ+𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝐿 + 𝑒) ∧ 𝐿 < ((𝐹𝑖) + 𝑒)) → ∃𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝐿 + -𝐿) ∧ 𝐿 < ((𝐹𝑖) + -𝐿))))
166, 8, 15sylc 60 . . . . 5 ((𝜑𝐿 < 0) → ∃𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝐿 + -𝐿) ∧ 𝐿 < ((𝐹𝑖) + -𝐿)))
17 simpl 106 . . . . . . . 8 (((𝐹𝑖) < (𝐿 + -𝐿) ∧ 𝐿 < ((𝐹𝑖) + -𝐿)) → (𝐹𝑖) < (𝐿 + -𝐿))
182recnd 7112 . . . . . . . . . 10 ((𝜑𝐿 < 0) → 𝐿 ∈ ℂ)
1918negidd 7374 . . . . . . . . 9 ((𝜑𝐿 < 0) → (𝐿 + -𝐿) = 0)
2019breq2d 3803 . . . . . . . 8 ((𝜑𝐿 < 0) → ((𝐹𝑖) < (𝐿 + -𝐿) ↔ (𝐹𝑖) < 0))
2117, 20syl5ib 147 . . . . . . 7 ((𝜑𝐿 < 0) → (((𝐹𝑖) < (𝐿 + -𝐿) ∧ 𝐿 < ((𝐹𝑖) + -𝐿)) → (𝐹𝑖) < 0))
2221ralimdv 2405 . . . . . 6 ((𝜑𝐿 < 0) → (∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝐿 + -𝐿) ∧ 𝐿 < ((𝐹𝑖) + -𝐿)) → ∀𝑖 ∈ (ℤ𝑗)(𝐹𝑖) < 0))
2322reximdv 2437 . . . . 5 ((𝜑𝐿 < 0) → (∃𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝐿 + -𝐿) ∧ 𝐿 < ((𝐹𝑖) + -𝐿)) → ∃𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)(𝐹𝑖) < 0))
2416, 23mpd 13 . . . 4 ((𝜑𝐿 < 0) → ∃𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)(𝐹𝑖) < 0)
25 0red 7085 . . . . . . . . . . 11 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑖 ∈ (ℤ𝑗))) → 0 ∈ ℝ)
26 eluznn 8633 . . . . . . . . . . . . 13 ((𝑗 ∈ ℕ ∧ 𝑖 ∈ (ℤ𝑗)) → 𝑖 ∈ ℕ)
27 resqrexlemex.seq . . . . . . . . . . . . . . 15 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}), ℝ+)
28 resqrexlemex.a . . . . . . . . . . . . . . 15 (𝜑𝐴 ∈ ℝ)
29 resqrexlemex.agt0 . . . . . . . . . . . . . . 15 (𝜑 → 0 ≤ 𝐴)
3027, 28, 29resqrexlemf 9833 . . . . . . . . . . . . . 14 (𝜑𝐹:ℕ⟶ℝ+)
3130ffvelrnda 5329 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ ℕ) → (𝐹𝑖) ∈ ℝ+)
3226, 31sylan2 274 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑖 ∈ (ℤ𝑗))) → (𝐹𝑖) ∈ ℝ+)
3332rpred 8719 . . . . . . . . . . 11 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑖 ∈ (ℤ𝑗))) → (𝐹𝑖) ∈ ℝ)
3432rpgt0d 8722 . . . . . . . . . . 11 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑖 ∈ (ℤ𝑗))) → 0 < (𝐹𝑖))
3525, 33, 34ltnsymd 7194 . . . . . . . . . 10 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑖 ∈ (ℤ𝑗))) → ¬ (𝐹𝑖) < 0)
3635pm2.21d 559 . . . . . . . . 9 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑖 ∈ (ℤ𝑗))) → ((𝐹𝑖) < 0 → ⊥))
3736anassrs 386 . . . . . . . 8 (((𝜑𝑗 ∈ ℕ) ∧ 𝑖 ∈ (ℤ𝑗)) → ((𝐹𝑖) < 0 → ⊥))
3837ralimdva 2404 . . . . . . 7 ((𝜑𝑗 ∈ ℕ) → (∀𝑖 ∈ (ℤ𝑗)(𝐹𝑖) < 0 → ∀𝑖 ∈ (ℤ𝑗)⊥))
39 nnz 8320 . . . . . . . . 9 (𝑗 ∈ ℕ → 𝑗 ∈ ℤ)
40 uzid 8582 . . . . . . . . . 10 (𝑗 ∈ ℤ → 𝑗 ∈ (ℤ𝑗))
41 elex2 2587 . . . . . . . . . 10 (𝑗 ∈ (ℤ𝑗) → ∃𝑧 𝑧 ∈ (ℤ𝑗))
42 r19.3rmv 3339 . . . . . . . . . 10 (∃𝑧 𝑧 ∈ (ℤ𝑗) → (⊥ ↔ ∀𝑖 ∈ (ℤ𝑗)⊥))
4340, 41, 423syl 17 . . . . . . . . 9 (𝑗 ∈ ℤ → (⊥ ↔ ∀𝑖 ∈ (ℤ𝑗)⊥))
4439, 43syl 14 . . . . . . . 8 (𝑗 ∈ ℕ → (⊥ ↔ ∀𝑖 ∈ (ℤ𝑗)⊥))
4544adantl 266 . . . . . . 7 ((𝜑𝑗 ∈ ℕ) → (⊥ ↔ ∀𝑖 ∈ (ℤ𝑗)⊥))
4638, 45sylibrd 162 . . . . . 6 ((𝜑𝑗 ∈ ℕ) → (∀𝑖 ∈ (ℤ𝑗)(𝐹𝑖) < 0 → ⊥))
4746rexlimdva 2450 . . . . 5 (𝜑 → (∃𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)(𝐹𝑖) < 0 → ⊥))
4847adantr 265 . . . 4 ((𝜑𝐿 < 0) → (∃𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)(𝐹𝑖) < 0 → ⊥))
4924, 48mpd 13 . . 3 ((𝜑𝐿 < 0) → ⊥)
5049inegd 1279 . 2 (𝜑 → ¬ 𝐿 < 0)
51 0re 7084 . . 3 0 ∈ ℝ
52 lenlt 7152 . . 3 ((0 ∈ ℝ ∧ 𝐿 ∈ ℝ) → (0 ≤ 𝐿 ↔ ¬ 𝐿 < 0))
5351, 1, 52sylancr 399 . 2 (𝜑 → (0 ≤ 𝐿 ↔ ¬ 𝐿 < 0))
5450, 53mpbird 160 1 (𝜑 → 0 ≤ 𝐿)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 101  wb 102   = wceq 1259  wfal 1264  wex 1397  wcel 1409  wral 2323  wrex 2324  {csn 3402   class class class wbr 3791   × cxp 4370  cfv 4929  (class class class)co 5539  cmpt2 5541  cr 6945  0cc0 6946  1c1 6947   + caddc 6949   < clt 7118  cle 7119  -cneg 7245   / cdiv 7724  cn 7989  2c2 8039  cz 8301  cuz 8568  +crp 8680  seqcseq 9374
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-in1 554  ax-in2 555  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-13 1420  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-coll 3899  ax-sep 3902  ax-nul 3910  ax-pow 3954  ax-pr 3971  ax-un 4197  ax-setind 4289  ax-iinf 4338  ax-cnex 7032  ax-resscn 7033  ax-1cn 7034  ax-1re 7035  ax-icn 7036  ax-addcl 7037  ax-addrcl 7038  ax-mulcl 7039  ax-mulrcl 7040  ax-addcom 7041  ax-mulcom 7042  ax-addass 7043  ax-mulass 7044  ax-distr 7045  ax-i2m1 7046  ax-1rid 7048  ax-0id 7049  ax-rnegex 7050  ax-precex 7051  ax-cnre 7052  ax-pre-ltirr 7053  ax-pre-ltwlin 7054  ax-pre-lttrn 7055  ax-pre-apti 7056  ax-pre-ltadd 7057  ax-pre-mulgt0 7058  ax-pre-mulext 7059
This theorem depends on definitions:  df-bi 114  df-dc 754  df-3or 897  df-3an 898  df-tru 1262  df-fal 1265  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ne 2221  df-nel 2315  df-ral 2328  df-rex 2329  df-reu 2330  df-rmo 2331  df-rab 2332  df-v 2576  df-sbc 2787  df-csb 2880  df-dif 2947  df-un 2949  df-in 2951  df-ss 2958  df-nul 3252  df-pw 3388  df-sn 3408  df-pr 3409  df-op 3411  df-uni 3608  df-int 3643  df-iun 3686  df-br 3792  df-opab 3846  df-mpt 3847  df-tr 3882  df-eprel 4053  df-id 4057  df-po 4060  df-iso 4061  df-iord 4130  df-on 4132  df-suc 4135  df-iom 4341  df-xp 4378  df-rel 4379  df-cnv 4380  df-co 4381  df-dm 4382  df-rn 4383  df-res 4384  df-ima 4385  df-iota 4894  df-fun 4931  df-fn 4932  df-f 4933  df-f1 4934  df-fo 4935  df-f1o 4936  df-fv 4937  df-riota 5495  df-ov 5542  df-oprab 5543  df-mpt2 5544  df-1st 5794  df-2nd 5795  df-recs 5950  df-irdg 5987  df-frec 6008  df-1o 6031  df-2o 6032  df-oadd 6035  df-omul 6036  df-er 6136  df-ec 6138  df-qs 6142  df-ni 6459  df-pli 6460  df-mi 6461  df-lti 6462  df-plpq 6499  df-mpq 6500  df-enq 6502  df-nqqs 6503  df-plqqs 6504  df-mqqs 6505  df-1nqqs 6506  df-rq 6507  df-ltnqqs 6508  df-enq0 6579  df-nq0 6580  df-0nq0 6581  df-plq0 6582  df-mq0 6583  df-inp 6621  df-i1p 6622  df-iplp 6623  df-iltp 6625  df-enr 6868  df-nr 6869  df-ltr 6872  df-0r 6873  df-1r 6874  df-0 6953  df-1 6954  df-r 6956  df-lt 6959  df-pnf 7120  df-mnf 7121  df-xr 7122  df-ltxr 7123  df-le 7124  df-sub 7246  df-neg 7247  df-reap 7639  df-ap 7646  df-div 7725  df-inn 7990  df-2 8048  df-n0 8239  df-z 8302  df-uz 8569  df-rp 8681  df-iseq 9375
This theorem is referenced by:  resqrexlemglsq  9848  resqrexlemex  9851
  Copyright terms: Public domain W3C validator