ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resqrexlemnm GIF version

Theorem resqrexlemnm 10042
Description: Lemma for resqrex 10050. The difference between two terms of the sequence. (Contributed by Mario Carneiro and Jim Kingdon, 31-Jul-2021.)
Hypotheses
Ref Expression
resqrexlemex.seq 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}), ℝ+)
resqrexlemex.a (𝜑𝐴 ∈ ℝ)
resqrexlemex.agt0 (𝜑 → 0 ≤ 𝐴)
resqrexlemnmsq.n (𝜑𝑁 ∈ ℕ)
resqrexlemnmsq.m (𝜑𝑀 ∈ ℕ)
resqrexlemnmsq.nm (𝜑𝑁𝑀)
Assertion
Ref Expression
resqrexlemnm (𝜑 → ((𝐹𝑁) − (𝐹𝑀)) < ((((𝐹‘1)↑2) · 2) / (2↑(𝑁 − 1))))
Distinct variable groups:   𝑦,𝐴,𝑧   𝜑,𝑦,𝑧   𝑦,𝑀,𝑧   𝑦,𝑁,𝑧
Allowed substitution hints:   𝐹(𝑦,𝑧)

Proof of Theorem resqrexlemnm
StepHypRef Expression
1 resqrexlemex.seq . . . . . . 7 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}), ℝ+)
2 resqrexlemex.a . . . . . . 7 (𝜑𝐴 ∈ ℝ)
3 resqrexlemex.agt0 . . . . . . 7 (𝜑 → 0 ≤ 𝐴)
41, 2, 3resqrexlemf 10031 . . . . . 6 (𝜑𝐹:ℕ⟶ℝ+)
5 resqrexlemnmsq.n . . . . . 6 (𝜑𝑁 ∈ ℕ)
64, 5ffvelrnd 5335 . . . . 5 (𝜑 → (𝐹𝑁) ∈ ℝ+)
76rpred 8854 . . . 4 (𝜑 → (𝐹𝑁) ∈ ℝ)
8 resqrexlemnmsq.m . . . . . 6 (𝜑𝑀 ∈ ℕ)
94, 8ffvelrnd 5335 . . . . 5 (𝜑 → (𝐹𝑀) ∈ ℝ+)
109rpred 8854 . . . 4 (𝜑 → (𝐹𝑀) ∈ ℝ)
117, 10resubcld 7552 . . 3 (𝜑 → ((𝐹𝑁) − (𝐹𝑀)) ∈ ℝ)
127resqcld 9728 . . . . 5 (𝜑 → ((𝐹𝑁)↑2) ∈ ℝ)
1310resqcld 9728 . . . . 5 (𝜑 → ((𝐹𝑀)↑2) ∈ ℝ)
1412, 13resubcld 7552 . . . 4 (𝜑 → (((𝐹𝑁)↑2) − ((𝐹𝑀)↑2)) ∈ ℝ)
15 2cn 8177 . . . . . . 7 2 ∈ ℂ
16 expm1t 9601 . . . . . . 7 ((2 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (2↑𝑁) = ((2↑(𝑁 − 1)) · 2))
1715, 5, 16sylancr 405 . . . . . 6 (𝜑 → (2↑𝑁) = ((2↑(𝑁 − 1)) · 2))
18 2nn 8260 . . . . . . . . 9 2 ∈ ℕ
1918a1i 9 . . . . . . . 8 (𝜑 → 2 ∈ ℕ)
205nnnn0d 8408 . . . . . . . 8 (𝜑𝑁 ∈ ℕ0)
2119, 20nnexpcld 9724 . . . . . . 7 (𝜑 → (2↑𝑁) ∈ ℕ)
2221nnrpd 8853 . . . . . 6 (𝜑 → (2↑𝑁) ∈ ℝ+)
2317, 22eqeltrrd 2157 . . . . 5 (𝜑 → ((2↑(𝑁 − 1)) · 2) ∈ ℝ+)
2423rpred 8854 . . . 4 (𝜑 → ((2↑(𝑁 − 1)) · 2) ∈ ℝ)
2514, 24remulcld 7211 . . 3 (𝜑 → ((((𝐹𝑁)↑2) − ((𝐹𝑀)↑2)) · ((2↑(𝑁 − 1)) · 2)) ∈ ℝ)
26 1nn 8117 . . . . . . . . 9 1 ∈ ℕ
2726a1i 9 . . . . . . . 8 (𝜑 → 1 ∈ ℕ)
284, 27ffvelrnd 5335 . . . . . . 7 (𝜑 → (𝐹‘1) ∈ ℝ+)
2919nnzd 8549 . . . . . . 7 (𝜑 → 2 ∈ ℤ)
3028, 29rpexpcld 9726 . . . . . 6 (𝜑 → ((𝐹‘1)↑2) ∈ ℝ+)
31 4re 8183 . . . . . . . . 9 4 ∈ ℝ
32 4pos 8203 . . . . . . . . 9 0 < 4
3331, 32elrpii 8818 . . . . . . . 8 4 ∈ ℝ+
3433a1i 9 . . . . . . 7 (𝜑 → 4 ∈ ℝ+)
355nnzd 8549 . . . . . . . 8 (𝜑𝑁 ∈ ℤ)
36 peano2zm 8470 . . . . . . . 8 (𝑁 ∈ ℤ → (𝑁 − 1) ∈ ℤ)
3735, 36syl 14 . . . . . . 7 (𝜑 → (𝑁 − 1) ∈ ℤ)
3834, 37rpexpcld 9726 . . . . . 6 (𝜑 → (4↑(𝑁 − 1)) ∈ ℝ+)
3930, 38rpdivcld 8872 . . . . 5 (𝜑 → (((𝐹‘1)↑2) / (4↑(𝑁 − 1))) ∈ ℝ+)
4039rpred 8854 . . . 4 (𝜑 → (((𝐹‘1)↑2) / (4↑(𝑁 − 1))) ∈ ℝ)
4140, 24remulcld 7211 . . 3 (𝜑 → ((((𝐹‘1)↑2) / (4↑(𝑁 − 1))) · ((2↑(𝑁 − 1)) · 2)) ∈ ℝ)
426, 9rpaddcld 8870 . . . . . . 7 (𝜑 → ((𝐹𝑁) + (𝐹𝑀)) ∈ ℝ+)
4342, 23rpmulcld 8871 . . . . . 6 (𝜑 → (((𝐹𝑁) + (𝐹𝑀)) · ((2↑(𝑁 − 1)) · 2)) ∈ ℝ+)
4443rpred 8854 . . . . 5 (𝜑 → (((𝐹𝑁) + (𝐹𝑀)) · ((2↑(𝑁 − 1)) · 2)) ∈ ℝ)
452adantr 270 . . . . . . . . 9 ((𝜑𝑁 < 𝑀) → 𝐴 ∈ ℝ)
463adantr 270 . . . . . . . . 9 ((𝜑𝑁 < 𝑀) → 0 ≤ 𝐴)
475adantr 270 . . . . . . . . 9 ((𝜑𝑁 < 𝑀) → 𝑁 ∈ ℕ)
488adantr 270 . . . . . . . . 9 ((𝜑𝑁 < 𝑀) → 𝑀 ∈ ℕ)
49 simpr 108 . . . . . . . . 9 ((𝜑𝑁 < 𝑀) → 𝑁 < 𝑀)
501, 45, 46, 47, 48, 49resqrexlemdecn 10036 . . . . . . . 8 ((𝜑𝑁 < 𝑀) → (𝐹𝑀) < (𝐹𝑁))
5110adantr 270 . . . . . . . . 9 ((𝜑𝑁 < 𝑀) → (𝐹𝑀) ∈ ℝ)
527adantr 270 . . . . . . . . 9 ((𝜑𝑁 < 𝑀) → (𝐹𝑁) ∈ ℝ)
53 difrp 8851 . . . . . . . . 9 (((𝐹𝑀) ∈ ℝ ∧ (𝐹𝑁) ∈ ℝ) → ((𝐹𝑀) < (𝐹𝑁) ↔ ((𝐹𝑁) − (𝐹𝑀)) ∈ ℝ+))
5451, 52, 53syl2anc 403 . . . . . . . 8 ((𝜑𝑁 < 𝑀) → ((𝐹𝑀) < (𝐹𝑁) ↔ ((𝐹𝑁) − (𝐹𝑀)) ∈ ℝ+))
5550, 54mpbid 145 . . . . . . 7 ((𝜑𝑁 < 𝑀) → ((𝐹𝑁) − (𝐹𝑀)) ∈ ℝ+)
5655rpge0d 8858 . . . . . 6 ((𝜑𝑁 < 𝑀) → 0 ≤ ((𝐹𝑁) − (𝐹𝑀)))
577recnd 7209 . . . . . . . . 9 (𝜑 → (𝐹𝑁) ∈ ℂ)
5857subidd 7474 . . . . . . . 8 (𝜑 → ((𝐹𝑁) − (𝐹𝑁)) = 0)
59 fveq2 5209 . . . . . . . . 9 (𝑁 = 𝑀 → (𝐹𝑁) = (𝐹𝑀))
6059oveq2d 5559 . . . . . . . 8 (𝑁 = 𝑀 → ((𝐹𝑁) − (𝐹𝑁)) = ((𝐹𝑁) − (𝐹𝑀)))
6158, 60sylan9req 2135 . . . . . . 7 ((𝜑𝑁 = 𝑀) → 0 = ((𝐹𝑁) − (𝐹𝑀)))
62 0re 7181 . . . . . . . 8 0 ∈ ℝ
6362eqlei 7271 . . . . . . 7 (0 = ((𝐹𝑁) − (𝐹𝑀)) → 0 ≤ ((𝐹𝑁) − (𝐹𝑀)))
6461, 63syl 14 . . . . . 6 ((𝜑𝑁 = 𝑀) → 0 ≤ ((𝐹𝑁) − (𝐹𝑀)))
65 resqrexlemnmsq.nm . . . . . . 7 (𝜑𝑁𝑀)
668nnzd 8549 . . . . . . . 8 (𝜑𝑀 ∈ ℤ)
67 zleloe 8479 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑁𝑀 ↔ (𝑁 < 𝑀𝑁 = 𝑀)))
6835, 66, 67syl2anc 403 . . . . . . 7 (𝜑 → (𝑁𝑀 ↔ (𝑁 < 𝑀𝑁 = 𝑀)))
6965, 68mpbid 145 . . . . . 6 (𝜑 → (𝑁 < 𝑀𝑁 = 𝑀))
7056, 64, 69mpjaodan 745 . . . . 5 (𝜑 → 0 ≤ ((𝐹𝑁) − (𝐹𝑀)))
71 1red 7196 . . . . . 6 (𝜑 → 1 ∈ ℝ)
7221nnrecred 8152 . . . . . . . . . . 11 (𝜑 → (1 / (2↑𝑁)) ∈ ℝ)
7372recnd 7209 . . . . . . . . . 10 (𝜑 → (1 / (2↑𝑁)) ∈ ℂ)
7473addid1d 7324 . . . . . . . . 9 (𝜑 → ((1 / (2↑𝑁)) + 0) = (1 / (2↑𝑁)))
75 0red 7182 . . . . . . . . . 10 (𝜑 → 0 ∈ ℝ)
761, 2, 3resqrexlemlo 10037 . . . . . . . . . . 11 ((𝜑𝑁 ∈ ℕ) → (1 / (2↑𝑁)) < (𝐹𝑁))
775, 76mpdan 412 . . . . . . . . . 10 (𝜑 → (1 / (2↑𝑁)) < (𝐹𝑁))
789rpgt0d 8857 . . . . . . . . . 10 (𝜑 → 0 < (𝐹𝑀))
7972, 75, 7, 10, 77, 78lt2addd 7734 . . . . . . . . 9 (𝜑 → ((1 / (2↑𝑁)) + 0) < ((𝐹𝑁) + (𝐹𝑀)))
8074, 79eqbrtrrd 3815 . . . . . . . 8 (𝜑 → (1 / (2↑𝑁)) < ((𝐹𝑁) + (𝐹𝑀)))
817, 10readdcld 7210 . . . . . . . . 9 (𝜑 → ((𝐹𝑁) + (𝐹𝑀)) ∈ ℝ)
8271, 81, 22ltdivmul2d 8907 . . . . . . . 8 (𝜑 → ((1 / (2↑𝑁)) < ((𝐹𝑁) + (𝐹𝑀)) ↔ 1 < (((𝐹𝑁) + (𝐹𝑀)) · (2↑𝑁))))
8380, 82mpbid 145 . . . . . . 7 (𝜑 → 1 < (((𝐹𝑁) + (𝐹𝑀)) · (2↑𝑁)))
8417oveq2d 5559 . . . . . . 7 (𝜑 → (((𝐹𝑁) + (𝐹𝑀)) · (2↑𝑁)) = (((𝐹𝑁) + (𝐹𝑀)) · ((2↑(𝑁 − 1)) · 2)))
8583, 84breqtrd 3817 . . . . . 6 (𝜑 → 1 < (((𝐹𝑁) + (𝐹𝑀)) · ((2↑(𝑁 − 1)) · 2)))
8671, 44, 85ltled 7295 . . . . 5 (𝜑 → 1 ≤ (((𝐹𝑁) + (𝐹𝑀)) · ((2↑(𝑁 − 1)) · 2)))
8711, 44, 70, 86lemulge11d 8082 . . . 4 (𝜑 → ((𝐹𝑁) − (𝐹𝑀)) ≤ (((𝐹𝑁) − (𝐹𝑀)) · (((𝐹𝑁) + (𝐹𝑀)) · ((2↑(𝑁 − 1)) · 2))))
8811recnd 7209 . . . . . 6 (𝜑 → ((𝐹𝑁) − (𝐹𝑀)) ∈ ℂ)
8981recnd 7209 . . . . . 6 (𝜑 → ((𝐹𝑁) + (𝐹𝑀)) ∈ ℂ)
9023rpcnd 8856 . . . . . 6 (𝜑 → ((2↑(𝑁 − 1)) · 2) ∈ ℂ)
9188, 89, 90mulassd 7204 . . . . 5 (𝜑 → ((((𝐹𝑁) − (𝐹𝑀)) · ((𝐹𝑁) + (𝐹𝑀))) · ((2↑(𝑁 − 1)) · 2)) = (((𝐹𝑁) − (𝐹𝑀)) · (((𝐹𝑁) + (𝐹𝑀)) · ((2↑(𝑁 − 1)) · 2))))
9288, 89mulcomd 7202 . . . . . . 7 (𝜑 → (((𝐹𝑁) − (𝐹𝑀)) · ((𝐹𝑁) + (𝐹𝑀))) = (((𝐹𝑁) + (𝐹𝑀)) · ((𝐹𝑁) − (𝐹𝑀))))
9310recnd 7209 . . . . . . . 8 (𝜑 → (𝐹𝑀) ∈ ℂ)
94 subsq 9678 . . . . . . . 8 (((𝐹𝑁) ∈ ℂ ∧ (𝐹𝑀) ∈ ℂ) → (((𝐹𝑁)↑2) − ((𝐹𝑀)↑2)) = (((𝐹𝑁) + (𝐹𝑀)) · ((𝐹𝑁) − (𝐹𝑀))))
9557, 93, 94syl2anc 403 . . . . . . 7 (𝜑 → (((𝐹𝑁)↑2) − ((𝐹𝑀)↑2)) = (((𝐹𝑁) + (𝐹𝑀)) · ((𝐹𝑁) − (𝐹𝑀))))
9692, 95eqtr4d 2117 . . . . . 6 (𝜑 → (((𝐹𝑁) − (𝐹𝑀)) · ((𝐹𝑁) + (𝐹𝑀))) = (((𝐹𝑁)↑2) − ((𝐹𝑀)↑2)))
9796oveq1d 5558 . . . . 5 (𝜑 → ((((𝐹𝑁) − (𝐹𝑀)) · ((𝐹𝑁) + (𝐹𝑀))) · ((2↑(𝑁 − 1)) · 2)) = ((((𝐹𝑁)↑2) − ((𝐹𝑀)↑2)) · ((2↑(𝑁 − 1)) · 2)))
9891, 97eqtr3d 2116 . . . 4 (𝜑 → (((𝐹𝑁) − (𝐹𝑀)) · (((𝐹𝑁) + (𝐹𝑀)) · ((2↑(𝑁 − 1)) · 2))) = ((((𝐹𝑁)↑2) − ((𝐹𝑀)↑2)) · ((2↑(𝑁 − 1)) · 2)))
9987, 98breqtrd 3817 . . 3 (𝜑 → ((𝐹𝑁) − (𝐹𝑀)) ≤ ((((𝐹𝑁)↑2) − ((𝐹𝑀)↑2)) · ((2↑(𝑁 − 1)) · 2)))
1001, 2, 3, 5, 8, 65resqrexlemnmsq 10041 . . . 4 (𝜑 → (((𝐹𝑁)↑2) − ((𝐹𝑀)↑2)) < (((𝐹‘1)↑2) / (4↑(𝑁 − 1))))
10114, 40, 23, 100ltmul1dd 8910 . . 3 (𝜑 → ((((𝐹𝑁)↑2) − ((𝐹𝑀)↑2)) · ((2↑(𝑁 − 1)) · 2)) < ((((𝐹‘1)↑2) / (4↑(𝑁 − 1))) · ((2↑(𝑁 − 1)) · 2)))
10211, 25, 41, 99, 101lelttrd 7301 . 2 (𝜑 → ((𝐹𝑁) − (𝐹𝑀)) < ((((𝐹‘1)↑2) / (4↑(𝑁 − 1))) · ((2↑(𝑁 − 1)) · 2)))
10340recnd 7209 . . . . . 6 (𝜑 → (((𝐹‘1)↑2) / (4↑(𝑁 − 1))) ∈ ℂ)
10419nnrpd 8853 . . . . . . . 8 (𝜑 → 2 ∈ ℝ+)
105104, 37rpexpcld 9726 . . . . . . 7 (𝜑 → (2↑(𝑁 − 1)) ∈ ℝ+)
106105rpcnd 8856 . . . . . 6 (𝜑 → (2↑(𝑁 − 1)) ∈ ℂ)
107 2cnd 8179 . . . . . 6 (𝜑 → 2 ∈ ℂ)
108103, 106, 107mulassd 7204 . . . . 5 (𝜑 → (((((𝐹‘1)↑2) / (4↑(𝑁 − 1))) · (2↑(𝑁 − 1))) · 2) = ((((𝐹‘1)↑2) / (4↑(𝑁 − 1))) · ((2↑(𝑁 − 1)) · 2)))
10930rpcnd 8856 . . . . . . . 8 (𝜑 → ((𝐹‘1)↑2) ∈ ℂ)
11038rpcnd 8856 . . . . . . . 8 (𝜑 → (4↑(𝑁 − 1)) ∈ ℂ)
11138rpap0d 8860 . . . . . . . 8 (𝜑 → (4↑(𝑁 − 1)) # 0)
112109, 110, 106, 111div32apd 7967 . . . . . . 7 (𝜑 → ((((𝐹‘1)↑2) / (4↑(𝑁 − 1))) · (2↑(𝑁 − 1))) = (((𝐹‘1)↑2) · ((2↑(𝑁 − 1)) / (4↑(𝑁 − 1)))))
113 4d2e2 8259 . . . . . . . . . . . 12 (4 / 2) = 2
114113oveq1i 5553 . . . . . . . . . . 11 ((4 / 2)↑(𝑁 − 1)) = (2↑(𝑁 − 1))
11534rpcnd 8856 . . . . . . . . . . . 12 (𝜑 → 4 ∈ ℂ)
116104rpap0d 8860 . . . . . . . . . . . 12 (𝜑 → 2 # 0)
117 nnm1nn0 8396 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℕ0)
1185, 117syl 14 . . . . . . . . . . . 12 (𝜑 → (𝑁 − 1) ∈ ℕ0)
119115, 107, 116, 118expdivapd 9716 . . . . . . . . . . 11 (𝜑 → ((4 / 2)↑(𝑁 − 1)) = ((4↑(𝑁 − 1)) / (2↑(𝑁 − 1))))
120114, 119syl5eqr 2128 . . . . . . . . . 10 (𝜑 → (2↑(𝑁 − 1)) = ((4↑(𝑁 − 1)) / (2↑(𝑁 − 1))))
121120oveq2d 5559 . . . . . . . . 9 (𝜑 → (1 / (2↑(𝑁 − 1))) = (1 / ((4↑(𝑁 − 1)) / (2↑(𝑁 − 1)))))
122105rpap0d 8860 . . . . . . . . . 10 (𝜑 → (2↑(𝑁 − 1)) # 0)
123110, 106, 111, 122recdivapd 7961 . . . . . . . . 9 (𝜑 → (1 / ((4↑(𝑁 − 1)) / (2↑(𝑁 − 1)))) = ((2↑(𝑁 − 1)) / (4↑(𝑁 − 1))))
124121, 123eqtrd 2114 . . . . . . . 8 (𝜑 → (1 / (2↑(𝑁 − 1))) = ((2↑(𝑁 − 1)) / (4↑(𝑁 − 1))))
125124oveq2d 5559 . . . . . . 7 (𝜑 → (((𝐹‘1)↑2) · (1 / (2↑(𝑁 − 1)))) = (((𝐹‘1)↑2) · ((2↑(𝑁 − 1)) / (4↑(𝑁 − 1)))))
126112, 125eqtr4d 2117 . . . . . 6 (𝜑 → ((((𝐹‘1)↑2) / (4↑(𝑁 − 1))) · (2↑(𝑁 − 1))) = (((𝐹‘1)↑2) · (1 / (2↑(𝑁 − 1)))))
127126oveq1d 5558 . . . . 5 (𝜑 → (((((𝐹‘1)↑2) / (4↑(𝑁 − 1))) · (2↑(𝑁 − 1))) · 2) = ((((𝐹‘1)↑2) · (1 / (2↑(𝑁 − 1)))) · 2))
128108, 127eqtr3d 2116 . . . 4 (𝜑 → ((((𝐹‘1)↑2) / (4↑(𝑁 − 1))) · ((2↑(𝑁 − 1)) · 2)) = ((((𝐹‘1)↑2) · (1 / (2↑(𝑁 − 1)))) · 2))
129106, 122recclapd 7936 . . . . 5 (𝜑 → (1 / (2↑(𝑁 − 1))) ∈ ℂ)
130109, 129, 107mul32d 7328 . . . 4 (𝜑 → ((((𝐹‘1)↑2) · (1 / (2↑(𝑁 − 1)))) · 2) = ((((𝐹‘1)↑2) · 2) · (1 / (2↑(𝑁 − 1)))))
131128, 130eqtrd 2114 . . 3 (𝜑 → ((((𝐹‘1)↑2) / (4↑(𝑁 − 1))) · ((2↑(𝑁 − 1)) · 2)) = ((((𝐹‘1)↑2) · 2) · (1 / (2↑(𝑁 − 1)))))
132109, 107mulcld 7201 . . . 4 (𝜑 → (((𝐹‘1)↑2) · 2) ∈ ℂ)
133132, 106, 122divrecapd 7947 . . 3 (𝜑 → ((((𝐹‘1)↑2) · 2) / (2↑(𝑁 − 1))) = ((((𝐹‘1)↑2) · 2) · (1 / (2↑(𝑁 − 1)))))
134131, 133eqtr4d 2117 . 2 (𝜑 → ((((𝐹‘1)↑2) / (4↑(𝑁 − 1))) · ((2↑(𝑁 − 1)) · 2)) = ((((𝐹‘1)↑2) · 2) / (2↑(𝑁 − 1))))
135102, 134breqtrd 3817 1 (𝜑 → ((𝐹𝑁) − (𝐹𝑀)) < ((((𝐹‘1)↑2) · 2) / (2↑(𝑁 − 1))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103  wo 662   = wceq 1285  wcel 1434  {csn 3406   class class class wbr 3793   × cxp 4369  cfv 4932  (class class class)co 5543  cmpt2 5545  cc 7041  cr 7042  0cc0 7043  1c1 7044   + caddc 7046   · cmul 7048   < clt 7215  cle 7216  cmin 7346   / cdiv 7827  cn 8106  2c2 8156  4c4 8158  0cn0 8355  cz 8432  +crp 8815  seqcseq 9521  cexp 9572
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064  ax-coll 3901  ax-sep 3904  ax-nul 3912  ax-pow 3956  ax-pr 3972  ax-un 4196  ax-setind 4288  ax-iinf 4337  ax-cnex 7129  ax-resscn 7130  ax-1cn 7131  ax-1re 7132  ax-icn 7133  ax-addcl 7134  ax-addrcl 7135  ax-mulcl 7136  ax-mulrcl 7137  ax-addcom 7138  ax-mulcom 7139  ax-addass 7140  ax-mulass 7141  ax-distr 7142  ax-i2m1 7143  ax-0lt1 7144  ax-1rid 7145  ax-0id 7146  ax-rnegex 7147  ax-precex 7148  ax-cnre 7149  ax-pre-ltirr 7150  ax-pre-ltwlin 7151  ax-pre-lttrn 7152  ax-pre-apti 7153  ax-pre-ltadd 7154  ax-pre-mulgt0 7155  ax-pre-mulext 7156
This theorem depends on definitions:  df-bi 115  df-dc 777  df-3or 921  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1687  df-eu 1945  df-mo 1946  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-ne 2247  df-nel 2341  df-ral 2354  df-rex 2355  df-reu 2356  df-rmo 2357  df-rab 2358  df-v 2604  df-sbc 2817  df-csb 2910  df-dif 2976  df-un 2978  df-in 2980  df-ss 2987  df-nul 3259  df-if 3360  df-pw 3392  df-sn 3412  df-pr 3413  df-op 3415  df-uni 3610  df-int 3645  df-iun 3688  df-br 3794  df-opab 3848  df-mpt 3849  df-tr 3884  df-id 4056  df-po 4059  df-iso 4060  df-iord 4129  df-on 4131  df-ilim 4132  df-suc 4134  df-iom 4340  df-xp 4377  df-rel 4378  df-cnv 4379  df-co 4380  df-dm 4381  df-rn 4382  df-res 4383  df-ima 4384  df-iota 4897  df-fun 4934  df-fn 4935  df-f 4936  df-f1 4937  df-fo 4938  df-f1o 4939  df-fv 4940  df-riota 5499  df-ov 5546  df-oprab 5547  df-mpt2 5548  df-1st 5798  df-2nd 5799  df-recs 5954  df-frec 6040  df-pnf 7217  df-mnf 7218  df-xr 7219  df-ltxr 7220  df-le 7221  df-sub 7348  df-neg 7349  df-reap 7742  df-ap 7749  df-div 7828  df-inn 8107  df-2 8165  df-3 8166  df-4 8167  df-n0 8356  df-z 8433  df-uz 8701  df-rp 8816  df-iseq 9522  df-iexp 9573
This theorem is referenced by:  resqrexlemcvg  10043
  Copyright terms: Public domain W3C validator