ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resqrexlemover GIF version

Theorem resqrexlemover 10034
Description: Lemma for resqrex 10050. Each element of the sequence is an overestimate. (Contributed by Mario Carneiro and Jim Kingdon, 27-Jul-2021.)
Hypotheses
Ref Expression
resqrexlemex.seq 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}), ℝ+)
resqrexlemex.a (𝜑𝐴 ∈ ℝ)
resqrexlemex.agt0 (𝜑 → 0 ≤ 𝐴)
Assertion
Ref Expression
resqrexlemover ((𝜑𝑁 ∈ ℕ) → 𝐴 < ((𝐹𝑁)↑2))
Distinct variable groups:   𝑦,𝐴,𝑧   𝜑,𝑦,𝑧
Allowed substitution hints:   𝐹(𝑦,𝑧)   𝑁(𝑦,𝑧)

Proof of Theorem resqrexlemover
Dummy variables 𝑓 𝑔 𝑘 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 5209 . . . . . 6 (𝑤 = 1 → (𝐹𝑤) = (𝐹‘1))
21oveq1d 5558 . . . . 5 (𝑤 = 1 → ((𝐹𝑤)↑2) = ((𝐹‘1)↑2))
32breq2d 3805 . . . 4 (𝑤 = 1 → (𝐴 < ((𝐹𝑤)↑2) ↔ 𝐴 < ((𝐹‘1)↑2)))
43imbi2d 228 . . 3 (𝑤 = 1 → ((𝜑𝐴 < ((𝐹𝑤)↑2)) ↔ (𝜑𝐴 < ((𝐹‘1)↑2))))
5 fveq2 5209 . . . . . 6 (𝑤 = 𝑘 → (𝐹𝑤) = (𝐹𝑘))
65oveq1d 5558 . . . . 5 (𝑤 = 𝑘 → ((𝐹𝑤)↑2) = ((𝐹𝑘)↑2))
76breq2d 3805 . . . 4 (𝑤 = 𝑘 → (𝐴 < ((𝐹𝑤)↑2) ↔ 𝐴 < ((𝐹𝑘)↑2)))
87imbi2d 228 . . 3 (𝑤 = 𝑘 → ((𝜑𝐴 < ((𝐹𝑤)↑2)) ↔ (𝜑𝐴 < ((𝐹𝑘)↑2))))
9 fveq2 5209 . . . . . 6 (𝑤 = (𝑘 + 1) → (𝐹𝑤) = (𝐹‘(𝑘 + 1)))
109oveq1d 5558 . . . . 5 (𝑤 = (𝑘 + 1) → ((𝐹𝑤)↑2) = ((𝐹‘(𝑘 + 1))↑2))
1110breq2d 3805 . . . 4 (𝑤 = (𝑘 + 1) → (𝐴 < ((𝐹𝑤)↑2) ↔ 𝐴 < ((𝐹‘(𝑘 + 1))↑2)))
1211imbi2d 228 . . 3 (𝑤 = (𝑘 + 1) → ((𝜑𝐴 < ((𝐹𝑤)↑2)) ↔ (𝜑𝐴 < ((𝐹‘(𝑘 + 1))↑2))))
13 fveq2 5209 . . . . . 6 (𝑤 = 𝑁 → (𝐹𝑤) = (𝐹𝑁))
1413oveq1d 5558 . . . . 5 (𝑤 = 𝑁 → ((𝐹𝑤)↑2) = ((𝐹𝑁)↑2))
1514breq2d 3805 . . . 4 (𝑤 = 𝑁 → (𝐴 < ((𝐹𝑤)↑2) ↔ 𝐴 < ((𝐹𝑁)↑2)))
1615imbi2d 228 . . 3 (𝑤 = 𝑁 → ((𝜑𝐴 < ((𝐹𝑤)↑2)) ↔ (𝜑𝐴 < ((𝐹𝑁)↑2))))
17 resqrexlemex.a . . . . 5 (𝜑𝐴 ∈ ℝ)
1817resqcld 9728 . . . . . 6 (𝜑 → (𝐴↑2) ∈ ℝ)
19 2re 8176 . . . . . . . 8 2 ∈ ℝ
2019a1i 9 . . . . . . 7 (𝜑 → 2 ∈ ℝ)
2120, 17remulcld 7211 . . . . . 6 (𝜑 → (2 · 𝐴) ∈ ℝ)
2218, 21readdcld 7210 . . . . 5 (𝜑 → ((𝐴↑2) + (2 · 𝐴)) ∈ ℝ)
23 1red 7196 . . . . . 6 (𝜑 → 1 ∈ ℝ)
2422, 23readdcld 7210 . . . . 5 (𝜑 → (((𝐴↑2) + (2 · 𝐴)) + 1) ∈ ℝ)
2517recnd 7209 . . . . . . . 8 (𝜑𝐴 ∈ ℂ)
2625mulid2d 7199 . . . . . . 7 (𝜑 → (1 · 𝐴) = 𝐴)
27 resqrexlemex.agt0 . . . . . . . 8 (𝜑 → 0 ≤ 𝐴)
28 1le2 8306 . . . . . . . . 9 1 ≤ 2
29 lemul1a 8003 . . . . . . . . 9 (((1 ∈ ℝ ∧ 2 ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) ∧ 1 ≤ 2) → (1 · 𝐴) ≤ (2 · 𝐴))
3028, 29mpan2 416 . . . . . . . 8 ((1 ∈ ℝ ∧ 2 ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) → (1 · 𝐴) ≤ (2 · 𝐴))
3123, 20, 17, 27, 30syl112anc 1174 . . . . . . 7 (𝜑 → (1 · 𝐴) ≤ (2 · 𝐴))
3226, 31eqbrtrrd 3815 . . . . . 6 (𝜑𝐴 ≤ (2 · 𝐴))
3317sqge0d 9729 . . . . . . 7 (𝜑 → 0 ≤ (𝐴↑2))
3421, 18addge02d 7701 . . . . . . 7 (𝜑 → (0 ≤ (𝐴↑2) ↔ (2 · 𝐴) ≤ ((𝐴↑2) + (2 · 𝐴))))
3533, 34mpbid 145 . . . . . 6 (𝜑 → (2 · 𝐴) ≤ ((𝐴↑2) + (2 · 𝐴)))
3617, 21, 22, 32, 35letrd 7300 . . . . 5 (𝜑𝐴 ≤ ((𝐴↑2) + (2 · 𝐴)))
3722ltp1d 8075 . . . . 5 (𝜑 → ((𝐴↑2) + (2 · 𝐴)) < (((𝐴↑2) + (2 · 𝐴)) + 1))
3817, 22, 24, 36, 37lelttrd 7301 . . . 4 (𝜑𝐴 < (((𝐴↑2) + (2 · 𝐴)) + 1))
39 resqrexlemex.seq . . . . . . . 8 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}), ℝ+)
4039, 17, 27resqrexlemf1 10032 . . . . . . 7 (𝜑 → (𝐹‘1) = (1 + 𝐴))
41 1cnd 7197 . . . . . . . 8 (𝜑 → 1 ∈ ℂ)
4241, 25addcomd 7326 . . . . . . 7 (𝜑 → (1 + 𝐴) = (𝐴 + 1))
4340, 42eqtrd 2114 . . . . . 6 (𝜑 → (𝐹‘1) = (𝐴 + 1))
4443oveq1d 5558 . . . . 5 (𝜑 → ((𝐹‘1)↑2) = ((𝐴 + 1)↑2))
45 binom21 9683 . . . . . 6 (𝐴 ∈ ℂ → ((𝐴 + 1)↑2) = (((𝐴↑2) + (2 · 𝐴)) + 1))
4625, 45syl 14 . . . . 5 (𝜑 → ((𝐴 + 1)↑2) = (((𝐴↑2) + (2 · 𝐴)) + 1))
4744, 46eqtrd 2114 . . . 4 (𝜑 → ((𝐹‘1)↑2) = (((𝐴↑2) + (2 · 𝐴)) + 1))
4838, 47breqtrrd 3819 . . 3 (𝜑𝐴 < ((𝐹‘1)↑2))
4939, 17, 27resqrexlemf 10031 . . . . . . . . . . . . . 14 (𝜑𝐹:ℕ⟶ℝ+)
5049ffvelrnda 5334 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℝ+)
5150rpred 8854 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℝ)
5217adantr 270 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ) → 𝐴 ∈ ℝ)
5352, 50rerpdivcld 8886 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → (𝐴 / (𝐹𝑘)) ∈ ℝ)
5451, 53resubcld 7552 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → ((𝐹𝑘) − (𝐴 / (𝐹𝑘))) ∈ ℝ)
5554adantr 270 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ) ∧ 𝐴 < ((𝐹𝑘)↑2)) → ((𝐹𝑘) − (𝐴 / (𝐹𝑘))) ∈ ℝ)
5655resqcld 9728 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ) ∧ 𝐴 < ((𝐹𝑘)↑2)) → (((𝐹𝑘) − (𝐴 / (𝐹𝑘)))↑2) ∈ ℝ)
57 4re 8183 . . . . . . . . . 10 4 ∈ ℝ
5857a1i 9 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ) ∧ 𝐴 < ((𝐹𝑘)↑2)) → 4 ∈ ℝ)
5951resqcld 9728 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ ℕ) → ((𝐹𝑘)↑2) ∈ ℝ)
6059, 52resubcld 7552 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ) → (((𝐹𝑘)↑2) − 𝐴) ∈ ℝ)
6160adantr 270 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ ℕ) ∧ 𝐴 < ((𝐹𝑘)↑2)) → (((𝐹𝑘)↑2) − 𝐴) ∈ ℝ)
6251adantr 270 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ ℕ) ∧ 𝐴 < ((𝐹𝑘)↑2)) → (𝐹𝑘) ∈ ℝ)
6352, 59posdifd 7699 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ) → (𝐴 < ((𝐹𝑘)↑2) ↔ 0 < (((𝐹𝑘)↑2) − 𝐴)))
6463biimpa 290 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ ℕ) ∧ 𝐴 < ((𝐹𝑘)↑2)) → 0 < (((𝐹𝑘)↑2) − 𝐴))
6550rpgt0d 8857 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ) → 0 < (𝐹𝑘))
6665adantr 270 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ ℕ) ∧ 𝐴 < ((𝐹𝑘)↑2)) → 0 < (𝐹𝑘))
6761, 62, 64, 66divgt0d 8080 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℕ) ∧ 𝐴 < ((𝐹𝑘)↑2)) → 0 < ((((𝐹𝑘)↑2) − 𝐴) / (𝐹𝑘)))
6851recnd 7209 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℂ)
6968sqcld 9700 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ ℕ) → ((𝐹𝑘)↑2) ∈ ℂ)
7069adantr 270 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ ℕ) ∧ 𝐴 < ((𝐹𝑘)↑2)) → ((𝐹𝑘)↑2) ∈ ℂ)
7125adantr 270 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ ℕ) → 𝐴 ∈ ℂ)
7271adantr 270 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ ℕ) ∧ 𝐴 < ((𝐹𝑘)↑2)) → 𝐴 ∈ ℂ)
7368adantr 270 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ ℕ) ∧ 𝐴 < ((𝐹𝑘)↑2)) → (𝐹𝑘) ∈ ℂ)
7450rpap0d 8860 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) # 0)
7574adantr 270 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ ℕ) ∧ 𝐴 < ((𝐹𝑘)↑2)) → (𝐹𝑘) # 0)
7670, 72, 73, 75divsubdirapd 7983 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ ℕ) ∧ 𝐴 < ((𝐹𝑘)↑2)) → ((((𝐹𝑘)↑2) − 𝐴) / (𝐹𝑘)) = ((((𝐹𝑘)↑2) / (𝐹𝑘)) − (𝐴 / (𝐹𝑘))))
7773sqvald 9699 . . . . . . . . . . . . . . . 16 (((𝜑𝑘 ∈ ℕ) ∧ 𝐴 < ((𝐹𝑘)↑2)) → ((𝐹𝑘)↑2) = ((𝐹𝑘) · (𝐹𝑘)))
7877oveq1d 5558 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ ℕ) ∧ 𝐴 < ((𝐹𝑘)↑2)) → (((𝐹𝑘)↑2) / (𝐹𝑘)) = (((𝐹𝑘) · (𝐹𝑘)) / (𝐹𝑘)))
7973, 73, 75divcanap3d 7949 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ ℕ) ∧ 𝐴 < ((𝐹𝑘)↑2)) → (((𝐹𝑘) · (𝐹𝑘)) / (𝐹𝑘)) = (𝐹𝑘))
8078, 79eqtrd 2114 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ ℕ) ∧ 𝐴 < ((𝐹𝑘)↑2)) → (((𝐹𝑘)↑2) / (𝐹𝑘)) = (𝐹𝑘))
8180oveq1d 5558 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ ℕ) ∧ 𝐴 < ((𝐹𝑘)↑2)) → ((((𝐹𝑘)↑2) / (𝐹𝑘)) − (𝐴 / (𝐹𝑘))) = ((𝐹𝑘) − (𝐴 / (𝐹𝑘))))
8276, 81eqtrd 2114 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℕ) ∧ 𝐴 < ((𝐹𝑘)↑2)) → ((((𝐹𝑘)↑2) − 𝐴) / (𝐹𝑘)) = ((𝐹𝑘) − (𝐴 / (𝐹𝑘))))
8367, 82breqtrd 3817 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ) ∧ 𝐴 < ((𝐹𝑘)↑2)) → 0 < ((𝐹𝑘) − (𝐴 / (𝐹𝑘))))
8455, 83gt0ap0d 7795 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ) ∧ 𝐴 < ((𝐹𝑘)↑2)) → ((𝐹𝑘) − (𝐴 / (𝐹𝑘))) # 0)
8555, 84sqgt0apd 9730 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ) ∧ 𝐴 < ((𝐹𝑘)↑2)) → 0 < (((𝐹𝑘) − (𝐴 / (𝐹𝑘)))↑2))
86 4pos 8203 . . . . . . . . . 10 0 < 4
8786a1i 9 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ) ∧ 𝐴 < ((𝐹𝑘)↑2)) → 0 < 4)
8856, 58, 85, 87divgt0d 8080 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ) ∧ 𝐴 < ((𝐹𝑘)↑2)) → 0 < ((((𝐹𝑘) − (𝐴 / (𝐹𝑘)))↑2) / 4))
8957, 86gt0ap0ii 7794 . . . . . . . . . . 11 4 # 0
9089a1i 9 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ) ∧ 𝐴 < ((𝐹𝑘)↑2)) → 4 # 0)
9156, 58, 90redivclapd 7987 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ) ∧ 𝐴 < ((𝐹𝑘)↑2)) → ((((𝐹𝑘) − (𝐴 / (𝐹𝑘)))↑2) / 4) ∈ ℝ)
9252adantr 270 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ) ∧ 𝐴 < ((𝐹𝑘)↑2)) → 𝐴 ∈ ℝ)
9391, 92ltaddpos2d 7697 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ) ∧ 𝐴 < ((𝐹𝑘)↑2)) → (0 < ((((𝐹𝑘) − (𝐴 / (𝐹𝑘)))↑2) / 4) ↔ 𝐴 < (((((𝐹𝑘) − (𝐴 / (𝐹𝑘)))↑2) / 4) + 𝐴)))
9488, 93mpbid 145 . . . . . . 7 (((𝜑𝑘 ∈ ℕ) ∧ 𝐴 < ((𝐹𝑘)↑2)) → 𝐴 < (((((𝐹𝑘) − (𝐴 / (𝐹𝑘)))↑2) / 4) + 𝐴))
9539, 17, 27resqrexlemfp1 10033 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ) → (𝐹‘(𝑘 + 1)) = (((𝐹𝑘) + (𝐴 / (𝐹𝑘))) / 2))
9695oveq1d 5558 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ) → ((𝐹‘(𝑘 + 1))↑2) = ((((𝐹𝑘) + (𝐴 / (𝐹𝑘))) / 2)↑2))
9751, 53readdcld 7210 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ ℕ) → ((𝐹𝑘) + (𝐴 / (𝐹𝑘))) ∈ ℝ)
9897recnd 7209 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ) → ((𝐹𝑘) + (𝐴 / (𝐹𝑘))) ∈ ℂ)
99 2cnd 8179 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ) → 2 ∈ ℂ)
100 2ap0 8199 . . . . . . . . . . . . . . 15 2 # 0
101100a1i 9 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ) → 2 # 0)
10298, 99, 101sqdivapd 9715 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ) → ((((𝐹𝑘) + (𝐴 / (𝐹𝑘))) / 2)↑2) = ((((𝐹𝑘) + (𝐴 / (𝐹𝑘)))↑2) / (2↑2)))
10396, 102eqtrd 2114 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → ((𝐹‘(𝑘 + 1))↑2) = ((((𝐹𝑘) + (𝐴 / (𝐹𝑘)))↑2) / (2↑2)))
104 sq2 9668 . . . . . . . . . . . . 13 (2↑2) = 4
105104oveq2i 5554 . . . . . . . . . . . 12 ((((𝐹𝑘) + (𝐴 / (𝐹𝑘)))↑2) / (2↑2)) = ((((𝐹𝑘) + (𝐴 / (𝐹𝑘)))↑2) / 4)
106103, 105syl6eq 2130 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → ((𝐹‘(𝑘 + 1))↑2) = ((((𝐹𝑘) + (𝐴 / (𝐹𝑘)))↑2) / 4))
10771, 68, 74divcanap2d 7946 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘 ∈ ℕ) → ((𝐹𝑘) · (𝐴 / (𝐹𝑘))) = 𝐴)
108107oveq2d 5559 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ ℕ) → (2 · ((𝐹𝑘) · (𝐴 / (𝐹𝑘)))) = (2 · 𝐴))
109108oveq2d 5559 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ ℕ) → (((𝐹𝑘)↑2) − (2 · ((𝐹𝑘) · (𝐴 / (𝐹𝑘))))) = (((𝐹𝑘)↑2) − (2 · 𝐴)))
110109oveq1d 5558 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ) → ((((𝐹𝑘)↑2) − (2 · ((𝐹𝑘) · (𝐴 / (𝐹𝑘))))) + ((𝐴 / (𝐹𝑘))↑2)) = ((((𝐹𝑘)↑2) − (2 · 𝐴)) + ((𝐴 / (𝐹𝑘))↑2)))
111110oveq1d 5558 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ) → (((((𝐹𝑘)↑2) − (2 · ((𝐹𝑘) · (𝐴 / (𝐹𝑘))))) + ((𝐴 / (𝐹𝑘))↑2)) + (4 · 𝐴)) = (((((𝐹𝑘)↑2) − (2 · 𝐴)) + ((𝐴 / (𝐹𝑘))↑2)) + (4 · 𝐴)))
11253recnd 7209 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ ℕ) → (𝐴 / (𝐹𝑘)) ∈ ℂ)
113 binom2sub 9684 . . . . . . . . . . . . . . 15 (((𝐹𝑘) ∈ ℂ ∧ (𝐴 / (𝐹𝑘)) ∈ ℂ) → (((𝐹𝑘) − (𝐴 / (𝐹𝑘)))↑2) = ((((𝐹𝑘)↑2) − (2 · ((𝐹𝑘) · (𝐴 / (𝐹𝑘))))) + ((𝐴 / (𝐹𝑘))↑2)))
11468, 112, 113syl2anc 403 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ) → (((𝐹𝑘) − (𝐴 / (𝐹𝑘)))↑2) = ((((𝐹𝑘)↑2) − (2 · ((𝐹𝑘) · (𝐴 / (𝐹𝑘))))) + ((𝐴 / (𝐹𝑘))↑2)))
115114oveq1d 5558 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ) → ((((𝐹𝑘) − (𝐴 / (𝐹𝑘)))↑2) + (4 · 𝐴)) = (((((𝐹𝑘)↑2) − (2 · ((𝐹𝑘) · (𝐴 / (𝐹𝑘))))) + ((𝐴 / (𝐹𝑘))↑2)) + (4 · 𝐴)))
116 binom2 9682 . . . . . . . . . . . . . . . 16 (((𝐹𝑘) ∈ ℂ ∧ (𝐴 / (𝐹𝑘)) ∈ ℂ) → (((𝐹𝑘) + (𝐴 / (𝐹𝑘)))↑2) = ((((𝐹𝑘)↑2) + (2 · ((𝐹𝑘) · (𝐴 / (𝐹𝑘))))) + ((𝐴 / (𝐹𝑘))↑2)))
11768, 112, 116syl2anc 403 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ ℕ) → (((𝐹𝑘) + (𝐴 / (𝐹𝑘)))↑2) = ((((𝐹𝑘)↑2) + (2 · ((𝐹𝑘) · (𝐴 / (𝐹𝑘))))) + ((𝐴 / (𝐹𝑘))↑2)))
118108oveq2d 5559 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ ℕ) → (((𝐹𝑘)↑2) + (2 · ((𝐹𝑘) · (𝐴 / (𝐹𝑘))))) = (((𝐹𝑘)↑2) + (2 · 𝐴)))
119118oveq1d 5558 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ ℕ) → ((((𝐹𝑘)↑2) + (2 · ((𝐹𝑘) · (𝐴 / (𝐹𝑘))))) + ((𝐴 / (𝐹𝑘))↑2)) = ((((𝐹𝑘)↑2) + (2 · 𝐴)) + ((𝐴 / (𝐹𝑘))↑2)))
120117, 119eqtrd 2114 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ) → (((𝐹𝑘) + (𝐴 / (𝐹𝑘)))↑2) = ((((𝐹𝑘)↑2) + (2 · 𝐴)) + ((𝐴 / (𝐹𝑘))↑2)))
12199, 71mulcld 7201 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘 ∈ ℕ) → (2 · 𝐴) ∈ ℂ)
122121negcld 7473 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘 ∈ ℕ) → -(2 · 𝐴) ∈ ℂ)
123 4cn 8184 . . . . . . . . . . . . . . . . . . 19 4 ∈ ℂ
124123a1i 9 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘 ∈ ℕ) → 4 ∈ ℂ)
125124, 71mulcld 7201 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘 ∈ ℕ) → (4 · 𝐴) ∈ ℂ)
12669, 122, 125addassd 7203 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ ℕ) → ((((𝐹𝑘)↑2) + -(2 · 𝐴)) + (4 · 𝐴)) = (((𝐹𝑘)↑2) + (-(2 · 𝐴) + (4 · 𝐴))))
12769, 121negsubd 7492 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘 ∈ ℕ) → (((𝐹𝑘)↑2) + -(2 · 𝐴)) = (((𝐹𝑘)↑2) − (2 · 𝐴)))
128127oveq1d 5558 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ ℕ) → ((((𝐹𝑘)↑2) + -(2 · 𝐴)) + (4 · 𝐴)) = ((((𝐹𝑘)↑2) − (2 · 𝐴)) + (4 · 𝐴)))
129 2cn 8177 . . . . . . . . . . . . . . . . . . . . . 22 2 ∈ ℂ
130129negcli 7443 . . . . . . . . . . . . . . . . . . . . 21 -2 ∈ ℂ
131130, 129, 129addassi 7189 . . . . . . . . . . . . . . . . . . . 20 ((-2 + 2) + 2) = (-2 + (2 + 2))
132129subidi 7446 . . . . . . . . . . . . . . . . . . . . . . . 24 (2 − 2) = 0
133132negeqi 7369 . . . . . . . . . . . . . . . . . . . . . . 23 -(2 − 2) = -0
134129, 129negsubdii 7460 . . . . . . . . . . . . . . . . . . . . . . 23 -(2 − 2) = (-2 + 2)
135 neg0 7421 . . . . . . . . . . . . . . . . . . . . . . 23 -0 = 0
136133, 134, 1353eqtr3i 2110 . . . . . . . . . . . . . . . . . . . . . 22 (-2 + 2) = 0
137136oveq1i 5553 . . . . . . . . . . . . . . . . . . . . 21 ((-2 + 2) + 2) = (0 + 2)
138129addid2i 7318 . . . . . . . . . . . . . . . . . . . . 21 (0 + 2) = 2
139137, 138eqtri 2102 . . . . . . . . . . . . . . . . . . . 20 ((-2 + 2) + 2) = 2
140 2p2e4 8226 . . . . . . . . . . . . . . . . . . . . 21 (2 + 2) = 4
141140oveq2i 5554 . . . . . . . . . . . . . . . . . . . 20 (-2 + (2 + 2)) = (-2 + 4)
142131, 139, 1413eqtr3ri 2111 . . . . . . . . . . . . . . . . . . 19 (-2 + 4) = 2
143142oveq1i 5553 . . . . . . . . . . . . . . . . . 18 ((-2 + 4) · 𝐴) = (2 · 𝐴)
144130a1i 9 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑘 ∈ ℕ) → -2 ∈ ℂ)
145144, 124, 71adddird 7206 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑘 ∈ ℕ) → ((-2 + 4) · 𝐴) = ((-2 · 𝐴) + (4 · 𝐴)))
14699, 71mulneg1d 7582 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑘 ∈ ℕ) → (-2 · 𝐴) = -(2 · 𝐴))
147146oveq1d 5558 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑘 ∈ ℕ) → ((-2 · 𝐴) + (4 · 𝐴)) = (-(2 · 𝐴) + (4 · 𝐴)))
148145, 147eqtrd 2114 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘 ∈ ℕ) → ((-2 + 4) · 𝐴) = (-(2 · 𝐴) + (4 · 𝐴)))
149143, 148syl5reqr 2129 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘 ∈ ℕ) → (-(2 · 𝐴) + (4 · 𝐴)) = (2 · 𝐴))
150149oveq2d 5559 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ ℕ) → (((𝐹𝑘)↑2) + (-(2 · 𝐴) + (4 · 𝐴))) = (((𝐹𝑘)↑2) + (2 · 𝐴)))
151126, 128, 1503eqtr3rd 2123 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ ℕ) → (((𝐹𝑘)↑2) + (2 · 𝐴)) = ((((𝐹𝑘)↑2) − (2 · 𝐴)) + (4 · 𝐴)))
152151oveq1d 5558 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ) → ((((𝐹𝑘)↑2) + (2 · 𝐴)) + ((𝐴 / (𝐹𝑘))↑2)) = (((((𝐹𝑘)↑2) − (2 · 𝐴)) + (4 · 𝐴)) + ((𝐴 / (𝐹𝑘))↑2)))
15319a1i 9 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘 ∈ ℕ) → 2 ∈ ℝ)
154153, 52remulcld 7211 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ ℕ) → (2 · 𝐴) ∈ ℝ)
15559, 154resubcld 7552 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ ℕ) → (((𝐹𝑘)↑2) − (2 · 𝐴)) ∈ ℝ)
15657a1i 9 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ ℕ) → 4 ∈ ℝ)
157156, 52remulcld 7211 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ ℕ) → (4 · 𝐴) ∈ ℝ)
15853resqcld 9728 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ ℕ) → ((𝐴 / (𝐹𝑘))↑2) ∈ ℝ)
159 recn 7168 . . . . . . . . . . . . . . . . 17 (𝑓 ∈ ℝ → 𝑓 ∈ ℂ)
160 recn 7168 . . . . . . . . . . . . . . . . 17 (𝑔 ∈ ℝ → 𝑔 ∈ ℂ)
161 addcom 7312 . . . . . . . . . . . . . . . . 17 ((𝑓 ∈ ℂ ∧ 𝑔 ∈ ℂ) → (𝑓 + 𝑔) = (𝑔 + 𝑓))
162159, 160, 161syl2an 283 . . . . . . . . . . . . . . . 16 ((𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ) → (𝑓 + 𝑔) = (𝑔 + 𝑓))
163162adantl 271 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ ℕ) ∧ (𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ)) → (𝑓 + 𝑔) = (𝑔 + 𝑓))
164 recn 7168 . . . . . . . . . . . . . . . . 17 ( ∈ ℝ → ∈ ℂ)
165 addass 7165 . . . . . . . . . . . . . . . . 17 ((𝑓 ∈ ℂ ∧ 𝑔 ∈ ℂ ∧ ∈ ℂ) → ((𝑓 + 𝑔) + ) = (𝑓 + (𝑔 + )))
166159, 160, 164, 165syl3an 1212 . . . . . . . . . . . . . . . 16 ((𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ ∧ ∈ ℝ) → ((𝑓 + 𝑔) + ) = (𝑓 + (𝑔 + )))
167166adantl 271 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ ℕ) ∧ (𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ ∧ ∈ ℝ)) → ((𝑓 + 𝑔) + ) = (𝑓 + (𝑔 + )))
168155, 157, 158, 163, 167caov32d 5712 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ) → (((((𝐹𝑘)↑2) − (2 · 𝐴)) + (4 · 𝐴)) + ((𝐴 / (𝐹𝑘))↑2)) = (((((𝐹𝑘)↑2) − (2 · 𝐴)) + ((𝐴 / (𝐹𝑘))↑2)) + (4 · 𝐴)))
169120, 152, 1683eqtrd 2118 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ) → (((𝐹𝑘) + (𝐴 / (𝐹𝑘)))↑2) = (((((𝐹𝑘)↑2) − (2 · 𝐴)) + ((𝐴 / (𝐹𝑘))↑2)) + (4 · 𝐴)))
170111, 115, 1693eqtr4rd 2125 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → (((𝐹𝑘) + (𝐴 / (𝐹𝑘)))↑2) = ((((𝐹𝑘) − (𝐴 / (𝐹𝑘)))↑2) + (4 · 𝐴)))
171170oveq1d 5558 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → ((((𝐹𝑘) + (𝐴 / (𝐹𝑘)))↑2) / 4) = (((((𝐹𝑘) − (𝐴 / (𝐹𝑘)))↑2) + (4 · 𝐴)) / 4))
172106, 171eqtrd 2114 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → ((𝐹‘(𝑘 + 1))↑2) = (((((𝐹𝑘) − (𝐴 / (𝐹𝑘)))↑2) + (4 · 𝐴)) / 4))
17368, 112subcld 7486 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → ((𝐹𝑘) − (𝐴 / (𝐹𝑘))) ∈ ℂ)
174173sqcld 9700 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → (((𝐹𝑘) − (𝐴 / (𝐹𝑘)))↑2) ∈ ℂ)
17589a1i 9 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → 4 # 0)
176174, 125, 124, 175divdirapd 7982 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → (((((𝐹𝑘) − (𝐴 / (𝐹𝑘)))↑2) + (4 · 𝐴)) / 4) = (((((𝐹𝑘) − (𝐴 / (𝐹𝑘)))↑2) / 4) + ((4 · 𝐴) / 4)))
17771, 124, 175divcanap3d 7949 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → ((4 · 𝐴) / 4) = 𝐴)
178177oveq2d 5559 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → (((((𝐹𝑘) − (𝐴 / (𝐹𝑘)))↑2) / 4) + ((4 · 𝐴) / 4)) = (((((𝐹𝑘) − (𝐴 / (𝐹𝑘)))↑2) / 4) + 𝐴))
179172, 176, 1783eqtrd 2118 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → ((𝐹‘(𝑘 + 1))↑2) = (((((𝐹𝑘) − (𝐴 / (𝐹𝑘)))↑2) / 4) + 𝐴))
180179breq2d 3805 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → (𝐴 < ((𝐹‘(𝑘 + 1))↑2) ↔ 𝐴 < (((((𝐹𝑘) − (𝐴 / (𝐹𝑘)))↑2) / 4) + 𝐴)))
181180adantr 270 . . . . . . 7 (((𝜑𝑘 ∈ ℕ) ∧ 𝐴 < ((𝐹𝑘)↑2)) → (𝐴 < ((𝐹‘(𝑘 + 1))↑2) ↔ 𝐴 < (((((𝐹𝑘) − (𝐴 / (𝐹𝑘)))↑2) / 4) + 𝐴)))
18294, 181mpbird 165 . . . . . 6 (((𝜑𝑘 ∈ ℕ) ∧ 𝐴 < ((𝐹𝑘)↑2)) → 𝐴 < ((𝐹‘(𝑘 + 1))↑2))
183182ex 113 . . . . 5 ((𝜑𝑘 ∈ ℕ) → (𝐴 < ((𝐹𝑘)↑2) → 𝐴 < ((𝐹‘(𝑘 + 1))↑2)))
184183expcom 114 . . . 4 (𝑘 ∈ ℕ → (𝜑 → (𝐴 < ((𝐹𝑘)↑2) → 𝐴 < ((𝐹‘(𝑘 + 1))↑2))))
185184a2d 26 . . 3 (𝑘 ∈ ℕ → ((𝜑𝐴 < ((𝐹𝑘)↑2)) → (𝜑𝐴 < ((𝐹‘(𝑘 + 1))↑2))))
1864, 8, 12, 16, 48, 185nnind 8122 . 2 (𝑁 ∈ ℕ → (𝜑𝐴 < ((𝐹𝑁)↑2)))
187186impcom 123 1 ((𝜑𝑁 ∈ ℕ) → 𝐴 < ((𝐹𝑁)↑2))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103  w3a 920   = wceq 1285  wcel 1434  {csn 3406   class class class wbr 3793   × cxp 4369  cfv 4932  (class class class)co 5543  cmpt2 5545  cc 7041  cr 7042  0cc0 7043  1c1 7044   + caddc 7046   · cmul 7048   < clt 7215  cle 7216  cmin 7346  -cneg 7347   # cap 7748   / cdiv 7827  cn 8106  2c2 8156  4c4 8158  +crp 8815  seqcseq 9521  cexp 9572
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064  ax-coll 3901  ax-sep 3904  ax-nul 3912  ax-pow 3956  ax-pr 3972  ax-un 4196  ax-setind 4288  ax-iinf 4337  ax-cnex 7129  ax-resscn 7130  ax-1cn 7131  ax-1re 7132  ax-icn 7133  ax-addcl 7134  ax-addrcl 7135  ax-mulcl 7136  ax-mulrcl 7137  ax-addcom 7138  ax-mulcom 7139  ax-addass 7140  ax-mulass 7141  ax-distr 7142  ax-i2m1 7143  ax-0lt1 7144  ax-1rid 7145  ax-0id 7146  ax-rnegex 7147  ax-precex 7148  ax-cnre 7149  ax-pre-ltirr 7150  ax-pre-ltwlin 7151  ax-pre-lttrn 7152  ax-pre-apti 7153  ax-pre-ltadd 7154  ax-pre-mulgt0 7155  ax-pre-mulext 7156
This theorem depends on definitions:  df-bi 115  df-dc 777  df-3or 921  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1687  df-eu 1945  df-mo 1946  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-ne 2247  df-nel 2341  df-ral 2354  df-rex 2355  df-reu 2356  df-rmo 2357  df-rab 2358  df-v 2604  df-sbc 2817  df-csb 2910  df-dif 2976  df-un 2978  df-in 2980  df-ss 2987  df-nul 3259  df-if 3360  df-pw 3392  df-sn 3412  df-pr 3413  df-op 3415  df-uni 3610  df-int 3645  df-iun 3688  df-br 3794  df-opab 3848  df-mpt 3849  df-tr 3884  df-id 4056  df-po 4059  df-iso 4060  df-iord 4129  df-on 4131  df-ilim 4132  df-suc 4134  df-iom 4340  df-xp 4377  df-rel 4378  df-cnv 4379  df-co 4380  df-dm 4381  df-rn 4382  df-res 4383  df-ima 4384  df-iota 4897  df-fun 4934  df-fn 4935  df-f 4936  df-f1 4937  df-fo 4938  df-f1o 4939  df-fv 4940  df-riota 5499  df-ov 5546  df-oprab 5547  df-mpt2 5548  df-1st 5798  df-2nd 5799  df-recs 5954  df-frec 6040  df-pnf 7217  df-mnf 7218  df-xr 7219  df-ltxr 7220  df-le 7221  df-sub 7348  df-neg 7349  df-reap 7742  df-ap 7749  df-div 7828  df-inn 8107  df-2 8165  df-3 8166  df-4 8167  df-n0 8356  df-z 8433  df-uz 8701  df-rp 8816  df-iseq 9522  df-iexp 9573
This theorem is referenced by:  resqrexlemdec  10035  resqrexlemcalc2  10039  resqrexlemnmsq  10041  resqrexlemga  10047
  Copyright terms: Public domain W3C validator