ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resqrtcl GIF version

Theorem resqrtcl 9481
Description: Closure of the square root function. (Contributed by Mario Carneiro, 9-Jul-2013.)
Assertion
Ref Expression
resqrtcl ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (√‘𝐴) ∈ ℝ)

Proof of Theorem resqrtcl
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 resqrex 9478 . 2 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ∃𝑦 ∈ ℝ (0 ≤ 𝑦 ∧ (𝑦↑2) = 𝐴))
2 simp1l 928 . . . . . 6 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑦 ∈ ℝ ∧ (0 ≤ 𝑦 ∧ (𝑦↑2) = 𝐴)) → 𝐴 ∈ ℝ)
3 sqrtrval 9452 . . . . . 6 (𝐴 ∈ ℝ → (√‘𝐴) = (𝑥 ∈ ℝ ((𝑥↑2) = 𝐴 ∧ 0 ≤ 𝑥)))
42, 3syl 14 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑦 ∈ ℝ ∧ (0 ≤ 𝑦 ∧ (𝑦↑2) = 𝐴)) → (√‘𝐴) = (𝑥 ∈ ℝ ((𝑥↑2) = 𝐴 ∧ 0 ≤ 𝑥)))
5 simp3r 933 . . . . . 6 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑦 ∈ ℝ ∧ (0 ≤ 𝑦 ∧ (𝑦↑2) = 𝐴)) → (𝑦↑2) = 𝐴)
6 simp3l 932 . . . . . 6 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑦 ∈ ℝ ∧ (0 ≤ 𝑦 ∧ (𝑦↑2) = 𝐴)) → 0 ≤ 𝑦)
7 simp2 905 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑦 ∈ ℝ ∧ (0 ≤ 𝑦 ∧ (𝑦↑2) = 𝐴)) → 𝑦 ∈ ℝ)
8 rersqreu 9480 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ∃!𝑥 ∈ ℝ ((𝑥↑2) = 𝐴 ∧ 0 ≤ 𝑥))
983ad2ant1 925 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑦 ∈ ℝ ∧ (0 ≤ 𝑦 ∧ (𝑦↑2) = 𝐴)) → ∃!𝑥 ∈ ℝ ((𝑥↑2) = 𝐴 ∧ 0 ≤ 𝑥))
10 oveq1 5482 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝑥↑2) = (𝑦↑2))
1110eqeq1d 2048 . . . . . . . . 9 (𝑥 = 𝑦 → ((𝑥↑2) = 𝐴 ↔ (𝑦↑2) = 𝐴))
12 breq2 3765 . . . . . . . . 9 (𝑥 = 𝑦 → (0 ≤ 𝑥 ↔ 0 ≤ 𝑦))
1311, 12anbi12d 442 . . . . . . . 8 (𝑥 = 𝑦 → (((𝑥↑2) = 𝐴 ∧ 0 ≤ 𝑥) ↔ ((𝑦↑2) = 𝐴 ∧ 0 ≤ 𝑦)))
1413riota2 5453 . . . . . . 7 ((𝑦 ∈ ℝ ∧ ∃!𝑥 ∈ ℝ ((𝑥↑2) = 𝐴 ∧ 0 ≤ 𝑥)) → (((𝑦↑2) = 𝐴 ∧ 0 ≤ 𝑦) ↔ (𝑥 ∈ ℝ ((𝑥↑2) = 𝐴 ∧ 0 ≤ 𝑥)) = 𝑦))
157, 9, 14syl2anc 391 . . . . . 6 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑦 ∈ ℝ ∧ (0 ≤ 𝑦 ∧ (𝑦↑2) = 𝐴)) → (((𝑦↑2) = 𝐴 ∧ 0 ≤ 𝑦) ↔ (𝑥 ∈ ℝ ((𝑥↑2) = 𝐴 ∧ 0 ≤ 𝑥)) = 𝑦))
165, 6, 15mpbi2and 850 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑦 ∈ ℝ ∧ (0 ≤ 𝑦 ∧ (𝑦↑2) = 𝐴)) → (𝑥 ∈ ℝ ((𝑥↑2) = 𝐴 ∧ 0 ≤ 𝑥)) = 𝑦)
174, 16eqtrd 2072 . . . 4 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑦 ∈ ℝ ∧ (0 ≤ 𝑦 ∧ (𝑦↑2) = 𝐴)) → (√‘𝐴) = 𝑦)
1817, 7eqeltrd 2114 . . 3 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑦 ∈ ℝ ∧ (0 ≤ 𝑦 ∧ (𝑦↑2) = 𝐴)) → (√‘𝐴) ∈ ℝ)
1918rexlimdv3a 2432 . 2 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (∃𝑦 ∈ ℝ (0 ≤ 𝑦 ∧ (𝑦↑2) = 𝐴) → (√‘𝐴) ∈ ℝ))
201, 19mpd 13 1 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (√‘𝐴) ∈ ℝ)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 97  wb 98  w3a 885   = wceq 1243  wcel 1393  wrex 2304  ∃!wreu 2305   class class class wbr 3761  cfv 4865  crio 5430  (class class class)co 5475  cr 6845  0cc0 6846  cle 7017  2c2 7916  cexp 9108  csqrt 9448
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-coll 3869  ax-sep 3872  ax-nul 3880  ax-pow 3924  ax-pr 3941  ax-un 4142  ax-setind 4232  ax-iinf 4274  ax-cnex 6932  ax-resscn 6933  ax-1cn 6934  ax-1re 6935  ax-icn 6936  ax-addcl 6937  ax-addrcl 6938  ax-mulcl 6939  ax-mulrcl 6940  ax-addcom 6941  ax-mulcom 6942  ax-addass 6943  ax-mulass 6944  ax-distr 6945  ax-i2m1 6946  ax-1rid 6948  ax-0id 6949  ax-rnegex 6950  ax-precex 6951  ax-cnre 6952  ax-pre-ltirr 6953  ax-pre-ltwlin 6954  ax-pre-lttrn 6955  ax-pre-apti 6956  ax-pre-ltadd 6957  ax-pre-mulgt0 6958  ax-pre-mulext 6959  ax-arch 6960  ax-caucvg 6961
This theorem depends on definitions:  df-bi 110  df-dc 743  df-3or 886  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-nel 2207  df-ral 2308  df-rex 2309  df-reu 2310  df-rmo 2311  df-rab 2312  df-v 2556  df-sbc 2762  df-csb 2850  df-dif 2917  df-un 2919  df-in 2921  df-ss 2928  df-nul 3222  df-if 3329  df-pw 3358  df-sn 3378  df-pr 3379  df-op 3381  df-uni 3578  df-int 3613  df-iun 3656  df-br 3762  df-opab 3816  df-mpt 3817  df-tr 3852  df-eprel 4023  df-id 4027  df-po 4030  df-iso 4031  df-iord 4075  df-on 4077  df-suc 4080  df-iom 4277  df-xp 4314  df-rel 4315  df-cnv 4316  df-co 4317  df-dm 4318  df-rn 4319  df-res 4320  df-ima 4321  df-iota 4830  df-fun 4867  df-fn 4868  df-f 4869  df-f1 4870  df-fo 4871  df-f1o 4872  df-fv 4873  df-riota 5431  df-ov 5478  df-oprab 5479  df-mpt2 5480  df-1st 5730  df-2nd 5731  df-recs 5883  df-irdg 5920  df-frec 5941  df-1o 5964  df-2o 5965  df-oadd 5968  df-omul 5969  df-er 6069  df-ec 6071  df-qs 6075  df-ni 6359  df-pli 6360  df-mi 6361  df-lti 6362  df-plpq 6399  df-mpq 6400  df-enq 6402  df-nqqs 6403  df-plqqs 6404  df-mqqs 6405  df-1nqqs 6406  df-rq 6407  df-ltnqqs 6408  df-enq0 6479  df-nq0 6480  df-0nq0 6481  df-plq0 6482  df-mq0 6483  df-inp 6521  df-i1p 6522  df-iplp 6523  df-iltp 6525  df-enr 6768  df-nr 6769  df-ltr 6772  df-0r 6773  df-1r 6774  df-0 6853  df-1 6854  df-r 6856  df-lt 6859  df-pnf 7018  df-mnf 7019  df-xr 7020  df-ltxr 7021  df-le 7022  df-sub 7140  df-neg 7141  df-reap 7518  df-ap 7525  df-div 7604  df-inn 7867  df-2 7925  df-3 7926  df-4 7927  df-n0 8130  df-z 8194  df-uz 8422  df-rp 8531  df-iseq 9066  df-iexp 9109  df-rsqrt 9450
This theorem is referenced by:  rersqrtthlem  9482  remsqsqrt  9484  sqrtgt0  9486  sqrtmul  9487  sqrtle  9488  sqrtlt  9489  sqrt11ap  9490  sqrt11  9491  rpsqrtcl  9493  sqrtdiv  9494  sqrtsq2  9495  abscl  9503  amgm2  9568  sqrtcli  9570  resqrtcld  9613
  Copyright terms: Public domain W3C validator