![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > resubcli | GIF version |
Description: Closure law for subtraction of reals. (Contributed by NM, 17-Jan-1997.) (Revised by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
renegcl.1 | ⊢ 𝐴 ∈ ℝ |
resubcl.2 | ⊢ 𝐵 ∈ ℝ |
Ref | Expression |
---|---|
resubcli | ⊢ (𝐴 − 𝐵) ∈ ℝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | renegcl.1 | . . . 4 ⊢ 𝐴 ∈ ℝ | |
2 | 1 | recni 7193 | . . 3 ⊢ 𝐴 ∈ ℂ |
3 | resubcl.2 | . . . 4 ⊢ 𝐵 ∈ ℝ | |
4 | 3 | recni 7193 | . . 3 ⊢ 𝐵 ∈ ℂ |
5 | negsub 7423 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + -𝐵) = (𝐴 − 𝐵)) | |
6 | 2, 4, 5 | mp2an 417 | . 2 ⊢ (𝐴 + -𝐵) = (𝐴 − 𝐵) |
7 | 3 | renegcli 7437 | . . 3 ⊢ -𝐵 ∈ ℝ |
8 | 1, 7 | readdcli 7194 | . 2 ⊢ (𝐴 + -𝐵) ∈ ℝ |
9 | 6, 8 | eqeltrri 2153 | 1 ⊢ (𝐴 − 𝐵) ∈ ℝ |
Colors of variables: wff set class |
Syntax hints: = wceq 1285 ∈ wcel 1434 (class class class)co 5543 ℂcc 7041 ℝcr 7042 + caddc 7046 − cmin 7346 -cneg 7347 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 577 ax-in2 578 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-14 1446 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2064 ax-sep 3904 ax-pow 3956 ax-pr 3972 ax-setind 4288 ax-resscn 7130 ax-1cn 7131 ax-icn 7133 ax-addcl 7134 ax-addrcl 7135 ax-mulcl 7136 ax-addcom 7138 ax-addass 7140 ax-distr 7142 ax-i2m1 7143 ax-0id 7146 ax-rnegex 7147 ax-cnre 7149 |
This theorem depends on definitions: df-bi 115 df-3an 922 df-tru 1288 df-fal 1291 df-nf 1391 df-sb 1687 df-eu 1945 df-mo 1946 df-clab 2069 df-cleq 2075 df-clel 2078 df-nfc 2209 df-ne 2247 df-ral 2354 df-rex 2355 df-reu 2356 df-rab 2358 df-v 2604 df-sbc 2817 df-dif 2976 df-un 2978 df-in 2980 df-ss 2987 df-pw 3392 df-sn 3412 df-pr 3413 df-op 3415 df-uni 3610 df-br 3794 df-opab 3848 df-id 4056 df-xp 4377 df-rel 4378 df-cnv 4379 df-co 4380 df-dm 4381 df-iota 4897 df-fun 4934 df-fv 4940 df-riota 5499 df-ov 5546 df-oprab 5547 df-mpt2 5548 df-sub 7348 df-neg 7349 |
This theorem is referenced by: 0reALT 7472 |
Copyright terms: Public domain | W3C validator |