ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reuss2 GIF version

Theorem reuss2 3244
Description: Transfer uniqueness to a smaller subclass. (Contributed by NM, 20-Oct-2005.)
Assertion
Ref Expression
reuss2 (((𝐴𝐵 ∧ ∀𝑥𝐴 (𝜑𝜓)) ∧ (∃𝑥𝐴 𝜑 ∧ ∃!𝑥𝐵 𝜓)) → ∃!𝑥𝐴 𝜑)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥)

Proof of Theorem reuss2
StepHypRef Expression
1 df-rex 2329 . . 3 (∃𝑥𝐴 𝜑 ↔ ∃𝑥(𝑥𝐴𝜑))
2 df-reu 2330 . . 3 (∃!𝑥𝐵 𝜓 ↔ ∃!𝑥(𝑥𝐵𝜓))
31, 2anbi12i 441 . 2 ((∃𝑥𝐴 𝜑 ∧ ∃!𝑥𝐵 𝜓) ↔ (∃𝑥(𝑥𝐴𝜑) ∧ ∃!𝑥(𝑥𝐵𝜓)))
4 df-ral 2328 . . . . . . 7 (∀𝑥𝐴 (𝜑𝜓) ↔ ∀𝑥(𝑥𝐴 → (𝜑𝜓)))
5 ssel 2966 . . . . . . . . . . . . . 14 (𝐴𝐵 → (𝑥𝐴𝑥𝐵))
6 prth 330 . . . . . . . . . . . . . 14 (((𝑥𝐴𝑥𝐵) ∧ (𝜑𝜓)) → ((𝑥𝐴𝜑) → (𝑥𝐵𝜓)))
75, 6sylan 271 . . . . . . . . . . . . 13 ((𝐴𝐵 ∧ (𝜑𝜓)) → ((𝑥𝐴𝜑) → (𝑥𝐵𝜓)))
87exp4b 353 . . . . . . . . . . . 12 (𝐴𝐵 → ((𝜑𝜓) → (𝑥𝐴 → (𝜑 → (𝑥𝐵𝜓)))))
98com23 76 . . . . . . . . . . 11 (𝐴𝐵 → (𝑥𝐴 → ((𝜑𝜓) → (𝜑 → (𝑥𝐵𝜓)))))
109a2d 26 . . . . . . . . . 10 (𝐴𝐵 → ((𝑥𝐴 → (𝜑𝜓)) → (𝑥𝐴 → (𝜑 → (𝑥𝐵𝜓)))))
1110imp4a 335 . . . . . . . . 9 (𝐴𝐵 → ((𝑥𝐴 → (𝜑𝜓)) → ((𝑥𝐴𝜑) → (𝑥𝐵𝜓))))
1211alimdv 1775 . . . . . . . 8 (𝐴𝐵 → (∀𝑥(𝑥𝐴 → (𝜑𝜓)) → ∀𝑥((𝑥𝐴𝜑) → (𝑥𝐵𝜓))))
1312imp 119 . . . . . . 7 ((𝐴𝐵 ∧ ∀𝑥(𝑥𝐴 → (𝜑𝜓))) → ∀𝑥((𝑥𝐴𝜑) → (𝑥𝐵𝜓)))
144, 13sylan2b 275 . . . . . 6 ((𝐴𝐵 ∧ ∀𝑥𝐴 (𝜑𝜓)) → ∀𝑥((𝑥𝐴𝜑) → (𝑥𝐵𝜓)))
15 euimmo 1983 . . . . . 6 (∀𝑥((𝑥𝐴𝜑) → (𝑥𝐵𝜓)) → (∃!𝑥(𝑥𝐵𝜓) → ∃*𝑥(𝑥𝐴𝜑)))
1614, 15syl 14 . . . . 5 ((𝐴𝐵 ∧ ∀𝑥𝐴 (𝜑𝜓)) → (∃!𝑥(𝑥𝐵𝜓) → ∃*𝑥(𝑥𝐴𝜑)))
17 eu5 1963 . . . . . 6 (∃!𝑥(𝑥𝐴𝜑) ↔ (∃𝑥(𝑥𝐴𝜑) ∧ ∃*𝑥(𝑥𝐴𝜑)))
1817simplbi2 371 . . . . 5 (∃𝑥(𝑥𝐴𝜑) → (∃*𝑥(𝑥𝐴𝜑) → ∃!𝑥(𝑥𝐴𝜑)))
1916, 18syl9 70 . . . 4 ((𝐴𝐵 ∧ ∀𝑥𝐴 (𝜑𝜓)) → (∃𝑥(𝑥𝐴𝜑) → (∃!𝑥(𝑥𝐵𝜓) → ∃!𝑥(𝑥𝐴𝜑))))
2019imp32 248 . . 3 (((𝐴𝐵 ∧ ∀𝑥𝐴 (𝜑𝜓)) ∧ (∃𝑥(𝑥𝐴𝜑) ∧ ∃!𝑥(𝑥𝐵𝜓))) → ∃!𝑥(𝑥𝐴𝜑))
21 df-reu 2330 . . 3 (∃!𝑥𝐴 𝜑 ↔ ∃!𝑥(𝑥𝐴𝜑))
2220, 21sylibr 141 . 2 (((𝐴𝐵 ∧ ∀𝑥𝐴 (𝜑𝜓)) ∧ (∃𝑥(𝑥𝐴𝜑) ∧ ∃!𝑥(𝑥𝐵𝜓))) → ∃!𝑥𝐴 𝜑)
233, 22sylan2b 275 1 (((𝐴𝐵 ∧ ∀𝑥𝐴 (𝜑𝜓)) ∧ (∃𝑥𝐴 𝜑 ∧ ∃!𝑥𝐵 𝜓)) → ∃!𝑥𝐴 𝜑)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 101  wal 1257  wex 1397  wcel 1409  ∃!weu 1916  ∃*wmo 1917  wral 2323  wrex 2324  ∃!wreu 2325  wss 2944
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038
This theorem depends on definitions:  df-bi 114  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-ral 2328  df-rex 2329  df-reu 2330  df-in 2951  df-ss 2958
This theorem is referenced by:  reuss  3245  reuun1  3246  riotass2  5521
  Copyright terms: Public domain W3C validator