Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexbidv2 GIF version

Theorem rexbidv2 2346
 Description: Formula-building rule for restricted existential quantifier (deduction rule). (Contributed by NM, 22-May-1999.)
Hypothesis
Ref Expression
rexbidv2.1 (𝜑 → ((𝑥𝐴𝜓) ↔ (𝑥𝐵𝜒)))
Assertion
Ref Expression
rexbidv2 (𝜑 → (∃𝑥𝐴 𝜓 ↔ ∃𝑥𝐵 𝜒))
Distinct variable group:   𝜑,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝜒(𝑥)   𝐴(𝑥)   𝐵(𝑥)

Proof of Theorem rexbidv2
StepHypRef Expression
1 rexbidv2.1 . . 3 (𝜑 → ((𝑥𝐴𝜓) ↔ (𝑥𝐵𝜒)))
21exbidv 1722 . 2 (𝜑 → (∃𝑥(𝑥𝐴𝜓) ↔ ∃𝑥(𝑥𝐵𝜒)))
3 df-rex 2329 . 2 (∃𝑥𝐴 𝜓 ↔ ∃𝑥(𝑥𝐴𝜓))
4 df-rex 2329 . 2 (∃𝑥𝐵 𝜒 ↔ ∃𝑥(𝑥𝐵𝜒))
52, 3, 43bitr4g 216 1 (𝜑 → (∃𝑥𝐴 𝜓 ↔ ∃𝑥𝐵 𝜒))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 101   ↔ wb 102  ∃wex 1397   ∈ wcel 1409  ∃wrex 2324 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-5 1352  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-4 1416  ax-17 1435  ax-ial 1443 This theorem depends on definitions:  df-bi 114  df-rex 2329 This theorem is referenced by:  rexss  3035  rexsupp  5319  isoini  5485  ltexpi  6493  rexuz  8619
 Copyright terms: Public domain W3C validator