ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexiunxp GIF version

Theorem rexiunxp 4676
Description: Write a double restricted quantification as one universal quantifier. In this version of rexxp 4678, 𝐵(𝑦) is not assumed to be constant. (Contributed by Mario Carneiro, 14-Feb-2015.)
Hypothesis
Ref Expression
ralxp.1 (𝑥 = ⟨𝑦, 𝑧⟩ → (𝜑𝜓))
Assertion
Ref Expression
rexiunxp (∃𝑥 𝑦𝐴 ({𝑦} × 𝐵)𝜑 ↔ ∃𝑦𝐴𝑧𝐵 𝜓)
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑧   𝜑,𝑦,𝑧   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦,𝑧)   𝐵(𝑦)

Proof of Theorem rexiunxp
StepHypRef Expression
1 eliunxp 4673 . . . . . 6 (𝑥 𝑦𝐴 ({𝑦} × 𝐵) ↔ ∃𝑦𝑧(𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑦𝐴𝑧𝐵)))
21anbi1i 453 . . . . 5 ((𝑥 𝑦𝐴 ({𝑦} × 𝐵) ∧ 𝜑) ↔ (∃𝑦𝑧(𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑦𝐴𝑧𝐵)) ∧ 𝜑))
3 19.41vv 1875 . . . . 5 (∃𝑦𝑧((𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑦𝐴𝑧𝐵)) ∧ 𝜑) ↔ (∃𝑦𝑧(𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑦𝐴𝑧𝐵)) ∧ 𝜑))
42, 3bitr4i 186 . . . 4 ((𝑥 𝑦𝐴 ({𝑦} × 𝐵) ∧ 𝜑) ↔ ∃𝑦𝑧((𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑦𝐴𝑧𝐵)) ∧ 𝜑))
54exbii 1584 . . 3 (∃𝑥(𝑥 𝑦𝐴 ({𝑦} × 𝐵) ∧ 𝜑) ↔ ∃𝑥𝑦𝑧((𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑦𝐴𝑧𝐵)) ∧ 𝜑))
6 exrot3 1668 . . . 4 (∃𝑥𝑦𝑧((𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑦𝐴𝑧𝐵)) ∧ 𝜑) ↔ ∃𝑦𝑧𝑥((𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑦𝐴𝑧𝐵)) ∧ 𝜑))
7 anass 398 . . . . . . 7 (((𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑦𝐴𝑧𝐵)) ∧ 𝜑) ↔ (𝑥 = ⟨𝑦, 𝑧⟩ ∧ ((𝑦𝐴𝑧𝐵) ∧ 𝜑)))
87exbii 1584 . . . . . 6 (∃𝑥((𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑦𝐴𝑧𝐵)) ∧ 𝜑) ↔ ∃𝑥(𝑥 = ⟨𝑦, 𝑧⟩ ∧ ((𝑦𝐴𝑧𝐵) ∧ 𝜑)))
9 vex 2684 . . . . . . . 8 𝑦 ∈ V
10 vex 2684 . . . . . . . 8 𝑧 ∈ V
119, 10opex 4146 . . . . . . 7 𝑦, 𝑧⟩ ∈ V
12 ralxp.1 . . . . . . . 8 (𝑥 = ⟨𝑦, 𝑧⟩ → (𝜑𝜓))
1312anbi2d 459 . . . . . . 7 (𝑥 = ⟨𝑦, 𝑧⟩ → (((𝑦𝐴𝑧𝐵) ∧ 𝜑) ↔ ((𝑦𝐴𝑧𝐵) ∧ 𝜓)))
1411, 13ceqsexv 2720 . . . . . 6 (∃𝑥(𝑥 = ⟨𝑦, 𝑧⟩ ∧ ((𝑦𝐴𝑧𝐵) ∧ 𝜑)) ↔ ((𝑦𝐴𝑧𝐵) ∧ 𝜓))
158, 14bitri 183 . . . . 5 (∃𝑥((𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑦𝐴𝑧𝐵)) ∧ 𝜑) ↔ ((𝑦𝐴𝑧𝐵) ∧ 𝜓))
16152exbii 1585 . . . 4 (∃𝑦𝑧𝑥((𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑦𝐴𝑧𝐵)) ∧ 𝜑) ↔ ∃𝑦𝑧((𝑦𝐴𝑧𝐵) ∧ 𝜓))
176, 16bitri 183 . . 3 (∃𝑥𝑦𝑧((𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑦𝐴𝑧𝐵)) ∧ 𝜑) ↔ ∃𝑦𝑧((𝑦𝐴𝑧𝐵) ∧ 𝜓))
185, 17bitri 183 . 2 (∃𝑥(𝑥 𝑦𝐴 ({𝑦} × 𝐵) ∧ 𝜑) ↔ ∃𝑦𝑧((𝑦𝐴𝑧𝐵) ∧ 𝜓))
19 df-rex 2420 . 2 (∃𝑥 𝑦𝐴 ({𝑦} × 𝐵)𝜑 ↔ ∃𝑥(𝑥 𝑦𝐴 ({𝑦} × 𝐵) ∧ 𝜑))
20 r2ex 2453 . 2 (∃𝑦𝐴𝑧𝐵 𝜓 ↔ ∃𝑦𝑧((𝑦𝐴𝑧𝐵) ∧ 𝜓))
2118, 19, 203bitr4i 211 1 (∃𝑥 𝑦𝐴 ({𝑦} × 𝐵)𝜑 ↔ ∃𝑦𝐴𝑧𝐵 𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1331  wex 1468  wcel 1480  wrex 2415  {csn 3522  cop 3525   ciun 3808   × cxp 4532
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-sep 4041  ax-pow 4093  ax-pr 4126
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ral 2419  df-rex 2420  df-v 2683  df-sbc 2905  df-csb 2999  df-un 3070  df-in 3072  df-ss 3079  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-iun 3810  df-opab 3985  df-xp 4540  df-rel 4541
This theorem is referenced by:  rexxp  4678
  Copyright terms: Public domain W3C validator