ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexlimdv3a GIF version

Theorem rexlimdv3a 2480
Description: Inference from Theorem 19.23 of [Margaris] p. 90 (restricted quantifier version). Frequently-used variant of rexlimdv 2477. (Contributed by NM, 7-Jun-2015.)
Hypothesis
Ref Expression
rexlimdv3a.1 ((𝜑𝑥𝐴𝜓) → 𝜒)
Assertion
Ref Expression
rexlimdv3a (𝜑 → (∃𝑥𝐴 𝜓𝜒))
Distinct variable groups:   𝜑,𝑥   𝜒,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝐴(𝑥)

Proof of Theorem rexlimdv3a
StepHypRef Expression
1 rexlimdv3a.1 . . 3 ((𝜑𝑥𝐴𝜓) → 𝜒)
213exp 1138 . 2 (𝜑 → (𝑥𝐴 → (𝜓𝜒)))
32rexlimdv 2477 1 (𝜑 → (∃𝑥𝐴 𝜓𝜒))
Colors of variables: wff set class
Syntax hints:  wi 4  w3a 920  wcel 1434  wrex 2350
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-5 1377  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-4 1441  ax-17 1460  ax-ial 1468  ax-i5r 1469
This theorem depends on definitions:  df-bi 115  df-3an 922  df-nf 1391  df-ral 2354  df-rex 2355
This theorem is referenced by:  resqrtcl  10053
  Copyright terms: Public domain W3C validator