Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexlimivw GIF version

Theorem rexlimivw 2423
 Description: Weaker version of rexlimiv 2421. (Contributed by FL, 19-Sep-2011.)
Hypothesis
Ref Expression
rexlimivw.1 (φψ)
Assertion
Ref Expression
rexlimivw (x A φψ)
Distinct variable group:   ψ,x
Allowed substitution hints:   φ(x)   A(x)

Proof of Theorem rexlimivw
StepHypRef Expression
1 rexlimivw.1 . . 3 (φψ)
21a1i 9 . 2 (x A → (φψ))
32rexlimiv 2421 1 (x A φψ)
 Colors of variables: wff set class Syntax hints:   → wi 4   ∈ wcel 1390  ∃wrex 2301 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-5 1333  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-4 1397  ax-17 1416  ax-ial 1424  ax-i5r 1425 This theorem depends on definitions:  df-bi 110  df-nf 1347  df-ral 2305  df-rex 2306 This theorem is referenced by:  r19.29vva  2450  eliun  3652  reusv3i  4157  elrnmptg  4529  fun11iun  5090  fmpt  5262  fliftfun  5379  elrnmpt2  5556  releldm2  5753  tfrlem4  5870  iinerm  6114  isfi  6177  ltbtwnnqq  6398  recexprlemlol  6598  recexprlemupu  6600
 Copyright terms: Public domain W3C validator