ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexsns GIF version

Theorem rexsns 3436
Description: Restricted existential quantification over a singleton. (Contributed by Mario Carneiro, 23-Apr-2015.) (Revised by NM, 22-Aug-2018.)
Assertion
Ref Expression
rexsns (∃𝑥 ∈ {𝐴}𝜑[𝐴 / 𝑥]𝜑)
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem rexsns
StepHypRef Expression
1 velsn 3419 . . . 4 (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴)
21anbi1i 439 . . 3 ((𝑥 ∈ {𝐴} ∧ 𝜑) ↔ (𝑥 = 𝐴𝜑))
32exbii 1512 . 2 (∃𝑥(𝑥 ∈ {𝐴} ∧ 𝜑) ↔ ∃𝑥(𝑥 = 𝐴𝜑))
4 df-rex 2329 . 2 (∃𝑥 ∈ {𝐴}𝜑 ↔ ∃𝑥(𝑥 ∈ {𝐴} ∧ 𝜑))
5 sbc5 2809 . 2 ([𝐴 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝐴𝜑))
63, 4, 53bitr4i 205 1 (∃𝑥 ∈ {𝐴}𝜑[𝐴 / 𝑥]𝜑)
Colors of variables: wff set class
Syntax hints:  wa 101  wb 102   = wceq 1259  wex 1397  wcel 1409  wrex 2324  [wsbc 2786  {csn 3402
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038
This theorem depends on definitions:  df-bi 114  df-tru 1262  df-nf 1366  df-sb 1662  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-rex 2329  df-v 2576  df-sbc 2787  df-sn 3408
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator