Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  rgen3 GIF version

Theorem rgen3 2423
 Description: Generalization rule for restricted quantification. (Contributed by NM, 12-Jan-2008.)
Hypothesis
Ref Expression
rgen3.1 ((𝑥𝐴𝑦𝐵𝑧𝐶) → 𝜑)
Assertion
Ref Expression
rgen3 𝑥𝐴𝑦𝐵𝑧𝐶 𝜑
Distinct variable groups:   𝑦,𝑧,𝐴   𝑧,𝐵   𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝐴(𝑥)   𝐵(𝑥,𝑦)   𝐶(𝑥,𝑦,𝑧)

Proof of Theorem rgen3
StepHypRef Expression
1 rgen3.1 . . . 4 ((𝑥𝐴𝑦𝐵𝑧𝐶) → 𝜑)
213expa 1115 . . 3 (((𝑥𝐴𝑦𝐵) ∧ 𝑧𝐶) → 𝜑)
32ralrimiva 2409 . 2 ((𝑥𝐴𝑦𝐵) → ∀𝑧𝐶 𝜑)
43rgen2 2422 1 𝑥𝐴𝑦𝐵𝑧𝐶 𝜑
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 101   ∧ w3a 896   ∈ wcel 1409  ∀wral 2323 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-5 1352  ax-gen 1354  ax-4 1416  ax-17 1435 This theorem depends on definitions:  df-bi 114  df-3an 898  df-nf 1366  df-ral 2328 This theorem is referenced by:  reg3exmidlemwe  4330  ltsopr  6751  ltsosr  6906  ltso  7154  xrltso  8817
 Copyright terms: Public domain W3C validator