ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  riota5f GIF version

Theorem riota5f 5754
Description: A method for computing restricted iota. (Contributed by NM, 16-Apr-2013.) (Revised by Mario Carneiro, 15-Oct-2016.)
Hypotheses
Ref Expression
riota5f.1 (𝜑𝑥𝐵)
riota5f.2 (𝜑𝐵𝐴)
riota5f.3 ((𝜑𝑥𝐴) → (𝜓𝑥 = 𝐵))
Assertion
Ref Expression
riota5f (𝜑 → (𝑥𝐴 𝜓) = 𝐵)
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝐵(𝑥)

Proof of Theorem riota5f
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 riota5f.3 . . 3 ((𝜑𝑥𝐴) → (𝜓𝑥 = 𝐵))
21ralrimiva 2505 . 2 (𝜑 → ∀𝑥𝐴 (𝜓𝑥 = 𝐵))
3 riota5f.2 . . . 4 (𝜑𝐵𝐴)
4 a1tru 1347 . . . . . . 7 ((𝜑 ∧ (𝑦𝐴 ∧ ∀𝑥𝐴 (𝜓𝑥 = 𝑦))) → ⊤)
5 reu6i 2875 . . . . . . . . 9 ((𝑦𝐴 ∧ ∀𝑥𝐴 (𝜓𝑥 = 𝑦)) → ∃!𝑥𝐴 𝜓)
65adantl 275 . . . . . . . 8 ((𝜑 ∧ (𝑦𝐴 ∧ ∀𝑥𝐴 (𝜓𝑥 = 𝑦))) → ∃!𝑥𝐴 𝜓)
7 nfv 1508 . . . . . . . . . 10 𝑥𝜑
8 nfv 1508 . . . . . . . . . . 11 𝑥 𝑦𝐴
9 nfra1 2466 . . . . . . . . . . 11 𝑥𝑥𝐴 (𝜓𝑥 = 𝑦)
108, 9nfan 1544 . . . . . . . . . 10 𝑥(𝑦𝐴 ∧ ∀𝑥𝐴 (𝜓𝑥 = 𝑦))
117, 10nfan 1544 . . . . . . . . 9 𝑥(𝜑 ∧ (𝑦𝐴 ∧ ∀𝑥𝐴 (𝜓𝑥 = 𝑦)))
12 nfcvd 2282 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝐴 ∧ ∀𝑥𝐴 (𝜓𝑥 = 𝑦))) → 𝑥𝑦)
13 nfvd 1509 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝐴 ∧ ∀𝑥𝐴 (𝜓𝑥 = 𝑦))) → Ⅎ𝑥⊤)
14 simprl 520 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝐴 ∧ ∀𝑥𝐴 (𝜓𝑥 = 𝑦))) → 𝑦𝐴)
15 simpr 109 . . . . . . . . . . 11 (((𝜑 ∧ (𝑦𝐴 ∧ ∀𝑥𝐴 (𝜓𝑥 = 𝑦))) ∧ 𝑥 = 𝑦) → 𝑥 = 𝑦)
16 simplrr 525 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑦𝐴 ∧ ∀𝑥𝐴 (𝜓𝑥 = 𝑦))) ∧ 𝑥 = 𝑦) → ∀𝑥𝐴 (𝜓𝑥 = 𝑦))
17 simplrl 524 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑦𝐴 ∧ ∀𝑥𝐴 (𝜓𝑥 = 𝑦))) ∧ 𝑥 = 𝑦) → 𝑦𝐴)
1815, 17eqeltrd 2216 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑦𝐴 ∧ ∀𝑥𝐴 (𝜓𝑥 = 𝑦))) ∧ 𝑥 = 𝑦) → 𝑥𝐴)
19 rsp 2480 . . . . . . . . . . . 12 (∀𝑥𝐴 (𝜓𝑥 = 𝑦) → (𝑥𝐴 → (𝜓𝑥 = 𝑦)))
2016, 18, 19sylc 62 . . . . . . . . . . 11 (((𝜑 ∧ (𝑦𝐴 ∧ ∀𝑥𝐴 (𝜓𝑥 = 𝑦))) ∧ 𝑥 = 𝑦) → (𝜓𝑥 = 𝑦))
2115, 20mpbird 166 . . . . . . . . . 10 (((𝜑 ∧ (𝑦𝐴 ∧ ∀𝑥𝐴 (𝜓𝑥 = 𝑦))) ∧ 𝑥 = 𝑦) → 𝜓)
22 a1tru 1347 . . . . . . . . . 10 (((𝜑 ∧ (𝑦𝐴 ∧ ∀𝑥𝐴 (𝜓𝑥 = 𝑦))) ∧ 𝑥 = 𝑦) → ⊤)
2321, 222thd 174 . . . . . . . . 9 (((𝜑 ∧ (𝑦𝐴 ∧ ∀𝑥𝐴 (𝜓𝑥 = 𝑦))) ∧ 𝑥 = 𝑦) → (𝜓 ↔ ⊤))
2411, 12, 13, 14, 23riota2df 5750 . . . . . . . 8 (((𝜑 ∧ (𝑦𝐴 ∧ ∀𝑥𝐴 (𝜓𝑥 = 𝑦))) ∧ ∃!𝑥𝐴 𝜓) → (⊤ ↔ (𝑥𝐴 𝜓) = 𝑦))
256, 24mpdan 417 . . . . . . 7 ((𝜑 ∧ (𝑦𝐴 ∧ ∀𝑥𝐴 (𝜓𝑥 = 𝑦))) → (⊤ ↔ (𝑥𝐴 𝜓) = 𝑦))
264, 25mpbid 146 . . . . . 6 ((𝜑 ∧ (𝑦𝐴 ∧ ∀𝑥𝐴 (𝜓𝑥 = 𝑦))) → (𝑥𝐴 𝜓) = 𝑦)
2726expr 372 . . . . 5 ((𝜑𝑦𝐴) → (∀𝑥𝐴 (𝜓𝑥 = 𝑦) → (𝑥𝐴 𝜓) = 𝑦))
2827ralrimiva 2505 . . . 4 (𝜑 → ∀𝑦𝐴 (∀𝑥𝐴 (𝜓𝑥 = 𝑦) → (𝑥𝐴 𝜓) = 𝑦))
29 rspsbc 2991 . . . 4 (𝐵𝐴 → (∀𝑦𝐴 (∀𝑥𝐴 (𝜓𝑥 = 𝑦) → (𝑥𝐴 𝜓) = 𝑦) → [𝐵 / 𝑦](∀𝑥𝐴 (𝜓𝑥 = 𝑦) → (𝑥𝐴 𝜓) = 𝑦)))
303, 28, 29sylc 62 . . 3 (𝜑[𝐵 / 𝑦](∀𝑥𝐴 (𝜓𝑥 = 𝑦) → (𝑥𝐴 𝜓) = 𝑦))
31 nfcvd 2282 . . . . . . . 8 (𝜑𝑥𝑦)
32 riota5f.1 . . . . . . . 8 (𝜑𝑥𝐵)
3331, 32nfeqd 2296 . . . . . . 7 (𝜑 → Ⅎ𝑥 𝑦 = 𝐵)
347, 33nfan1 1543 . . . . . 6 𝑥(𝜑𝑦 = 𝐵)
35 simpr 109 . . . . . . . 8 ((𝜑𝑦 = 𝐵) → 𝑦 = 𝐵)
3635eqeq2d 2151 . . . . . . 7 ((𝜑𝑦 = 𝐵) → (𝑥 = 𝑦𝑥 = 𝐵))
3736bibi2d 231 . . . . . 6 ((𝜑𝑦 = 𝐵) → ((𝜓𝑥 = 𝑦) ↔ (𝜓𝑥 = 𝐵)))
3834, 37ralbid 2435 . . . . 5 ((𝜑𝑦 = 𝐵) → (∀𝑥𝐴 (𝜓𝑥 = 𝑦) ↔ ∀𝑥𝐴 (𝜓𝑥 = 𝐵)))
3935eqeq2d 2151 . . . . 5 ((𝜑𝑦 = 𝐵) → ((𝑥𝐴 𝜓) = 𝑦 ↔ (𝑥𝐴 𝜓) = 𝐵))
4038, 39imbi12d 233 . . . 4 ((𝜑𝑦 = 𝐵) → ((∀𝑥𝐴 (𝜓𝑥 = 𝑦) → (𝑥𝐴 𝜓) = 𝑦) ↔ (∀𝑥𝐴 (𝜓𝑥 = 𝐵) → (𝑥𝐴 𝜓) = 𝐵)))
413, 40sbcied 2945 . . 3 (𝜑 → ([𝐵 / 𝑦](∀𝑥𝐴 (𝜓𝑥 = 𝑦) → (𝑥𝐴 𝜓) = 𝑦) ↔ (∀𝑥𝐴 (𝜓𝑥 = 𝐵) → (𝑥𝐴 𝜓) = 𝐵)))
4230, 41mpbid 146 . 2 (𝜑 → (∀𝑥𝐴 (𝜓𝑥 = 𝐵) → (𝑥𝐴 𝜓) = 𝐵))
432, 42mpd 13 1 (𝜑 → (𝑥𝐴 𝜓) = 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1331  wtru 1332  wcel 1480  wnfc 2268  wral 2416  ∃!wreu 2418  [wsbc 2909  crio 5729
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2002  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-rex 2422  df-reu 2423  df-v 2688  df-sbc 2910  df-un 3075  df-sn 3533  df-pr 3534  df-uni 3737  df-iota 5088  df-riota 5730
This theorem is referenced by:  riota5  5755
  Copyright terms: Public domain W3C validator