ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  riotasbc GIF version

Theorem riotasbc 5514
Description: Substitution law for descriptions. (Contributed by NM, 23-Aug-2011.) (Proof shortened by Mario Carneiro, 24-Dec-2016.)
Assertion
Ref Expression
riotasbc (∃!𝑥𝐴 𝜑[(𝑥𝐴 𝜑) / 𝑥]𝜑)

Proof of Theorem riotasbc
StepHypRef Expression
1 rabssab 3082 . . 3 {𝑥𝐴𝜑} ⊆ {𝑥𝜑}
2 riotacl2 5512 . . 3 (∃!𝑥𝐴 𝜑 → (𝑥𝐴 𝜑) ∈ {𝑥𝐴𝜑})
31, 2sseldi 2998 . 2 (∃!𝑥𝐴 𝜑 → (𝑥𝐴 𝜑) ∈ {𝑥𝜑})
4 df-sbc 2817 . 2 ([(𝑥𝐴 𝜑) / 𝑥]𝜑 ↔ (𝑥𝐴 𝜑) ∈ {𝑥𝜑})
53, 4sylibr 132 1 (∃!𝑥𝐴 𝜑[(𝑥𝐴 𝜑) / 𝑥]𝜑)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 1434  {cab 2068  ∃!wreu 2351  {crab 2353  [wsbc 2816  crio 5498
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064
This theorem depends on definitions:  df-bi 115  df-tru 1288  df-nf 1391  df-sb 1687  df-eu 1945  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-rex 2355  df-reu 2356  df-rab 2358  df-v 2604  df-sbc 2817  df-un 2978  df-in 2980  df-ss 2987  df-sn 3412  df-pr 3413  df-uni 3610  df-iota 4897  df-riota 5499
This theorem is referenced by:  riotass2  5525  riotass  5526  cjth  9871
  Copyright terms: Public domain W3C validator