ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rmoan GIF version

Theorem rmoan 2791
Description: Restricted "at most one" still holds when a conjunct is added. (Contributed by NM, 16-Jun-2017.)
Assertion
Ref Expression
rmoan (∃*𝑥𝐴 𝜑 → ∃*𝑥𝐴 (𝜓𝜑))

Proof of Theorem rmoan
StepHypRef Expression
1 moan 2011 . . 3 (∃*𝑥(𝑥𝐴𝜑) → ∃*𝑥(𝜓 ∧ (𝑥𝐴𝜑)))
2 an12 526 . . . 4 ((𝜓 ∧ (𝑥𝐴𝜑)) ↔ (𝑥𝐴 ∧ (𝜓𝜑)))
32mobii 1979 . . 3 (∃*𝑥(𝜓 ∧ (𝑥𝐴𝜑)) ↔ ∃*𝑥(𝑥𝐴 ∧ (𝜓𝜑)))
41, 3sylib 120 . 2 (∃*𝑥(𝑥𝐴𝜑) → ∃*𝑥(𝑥𝐴 ∧ (𝜓𝜑)))
5 df-rmo 2357 . 2 (∃*𝑥𝐴 𝜑 ↔ ∃*𝑥(𝑥𝐴𝜑))
6 df-rmo 2357 . 2 (∃*𝑥𝐴 (𝜓𝜑) ↔ ∃*𝑥(𝑥𝐴 ∧ (𝜓𝜑)))
74, 5, 63imtr4i 199 1 (∃*𝑥𝐴 𝜑 → ∃*𝑥𝐴 (𝜓𝜑))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wcel 1434  ∃*wmo 1943  ∃*wrmo 2352
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469
This theorem depends on definitions:  df-bi 115  df-tru 1288  df-nf 1391  df-sb 1687  df-eu 1945  df-mo 1946  df-rmo 2357
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator