![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rncnvcnv | GIF version |
Description: The range of the double converse of a class. (Contributed by NM, 8-Apr-2007.) |
Ref | Expression |
---|---|
rncnvcnv | ⊢ ran ◡◡𝐴 = ran 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rn 4402 | . 2 ⊢ ran 𝐴 = dom ◡𝐴 | |
2 | dfdm4 4575 | . 2 ⊢ dom ◡𝐴 = ran ◡◡𝐴 | |
3 | 1, 2 | eqtr2i 2104 | 1 ⊢ ran ◡◡𝐴 = ran 𝐴 |
Colors of variables: wff set class |
Syntax hints: = wceq 1285 ◡ccnv 4390 dom cdm 4391 ran crn 4392 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-14 1446 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2065 ax-sep 3916 ax-pow 3968 ax-pr 3992 |
This theorem depends on definitions: df-bi 115 df-3an 922 df-tru 1288 df-nf 1391 df-sb 1688 df-eu 1946 df-mo 1947 df-clab 2070 df-cleq 2076 df-clel 2079 df-nfc 2212 df-v 2612 df-un 2986 df-in 2988 df-ss 2995 df-pw 3402 df-sn 3422 df-pr 3423 df-op 3425 df-br 3806 df-opab 3860 df-cnv 4399 df-dm 4401 df-rn 4402 |
This theorem is referenced by: rnresv 4830 |
Copyright terms: Public domain | W3C validator |