Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  rnpropg GIF version

Theorem rnpropg 4828
 Description: The range of a pair of ordered pairs is the pair of second members. (Contributed by Thierry Arnoux, 3-Jan-2017.)
Assertion
Ref Expression
rnpropg ((𝐴𝑉𝐵𝑊) → ran {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩} = {𝐶, 𝐷})

Proof of Theorem rnpropg
StepHypRef Expression
1 df-pr 3410 . . 3 {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩} = ({⟨𝐴, 𝐶⟩} ∪ {⟨𝐵, 𝐷⟩})
21rneqi 4590 . 2 ran {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩} = ran ({⟨𝐴, 𝐶⟩} ∪ {⟨𝐵, 𝐷⟩})
3 rnsnopg 4827 . . . . 5 (𝐴𝑉 → ran {⟨𝐴, 𝐶⟩} = {𝐶})
43adantr 265 . . . 4 ((𝐴𝑉𝐵𝑊) → ran {⟨𝐴, 𝐶⟩} = {𝐶})
5 rnsnopg 4827 . . . . 5 (𝐵𝑊 → ran {⟨𝐵, 𝐷⟩} = {𝐷})
65adantl 266 . . . 4 ((𝐴𝑉𝐵𝑊) → ran {⟨𝐵, 𝐷⟩} = {𝐷})
74, 6uneq12d 3126 . . 3 ((𝐴𝑉𝐵𝑊) → (ran {⟨𝐴, 𝐶⟩} ∪ ran {⟨𝐵, 𝐷⟩}) = ({𝐶} ∪ {𝐷}))
8 rnun 4760 . . 3 ran ({⟨𝐴, 𝐶⟩} ∪ {⟨𝐵, 𝐷⟩}) = (ran {⟨𝐴, 𝐶⟩} ∪ ran {⟨𝐵, 𝐷⟩})
9 df-pr 3410 . . 3 {𝐶, 𝐷} = ({𝐶} ∪ {𝐷})
107, 8, 93eqtr4g 2113 . 2 ((𝐴𝑉𝐵𝑊) → ran ({⟨𝐴, 𝐶⟩} ∪ {⟨𝐵, 𝐷⟩}) = {𝐶, 𝐷})
112, 10syl5eq 2100 1 ((𝐴𝑉𝐵𝑊) → ran {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩} = {𝐶, 𝐷})
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 101   = wceq 1259   ∈ wcel 1409   ∪ cun 2943  {csn 3403  {cpr 3404  ⟨cop 3406  ran crn 4374 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-sep 3903  ax-pow 3955  ax-pr 3972 This theorem depends on definitions:  df-bi 114  df-3an 898  df-tru 1262  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ral 2328  df-rex 2329  df-v 2576  df-un 2950  df-in 2952  df-ss 2959  df-pw 3389  df-sn 3409  df-pr 3410  df-op 3412  df-br 3793  df-opab 3847  df-xp 4379  df-rel 4380  df-cnv 4381  df-dm 4383  df-rn 4384 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator