![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rnxpm | GIF version |
Description: The range of a cross product. Part of Theorem 3.13(x) of [Monk1] p. 37, with non-empty changed to inhabited. (Contributed by Jim Kingdon, 12-Dec-2018.) |
Ref | Expression |
---|---|
rnxpm | ⊢ (∃𝑥 𝑥 ∈ 𝐴 → ran (𝐴 × 𝐵) = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rn 4376 | . . 3 ⊢ ran (𝐴 × 𝐵) = dom ◡(𝐴 × 𝐵) | |
2 | cnvxp 4766 | . . . 4 ⊢ ◡(𝐴 × 𝐵) = (𝐵 × 𝐴) | |
3 | 2 | dmeqi 4558 | . . 3 ⊢ dom ◡(𝐴 × 𝐵) = dom (𝐵 × 𝐴) |
4 | 1, 3 | eqtri 2102 | . 2 ⊢ ran (𝐴 × 𝐵) = dom (𝐵 × 𝐴) |
5 | dmxpm 4577 | . 2 ⊢ (∃𝑥 𝑥 ∈ 𝐴 → dom (𝐵 × 𝐴) = 𝐵) | |
6 | 4, 5 | syl5eq 2126 | 1 ⊢ (∃𝑥 𝑥 ∈ 𝐴 → ran (𝐴 × 𝐵) = 𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1285 ∃wex 1422 ∈ wcel 1434 × cxp 4363 ◡ccnv 4364 dom cdm 4365 ran crn 4366 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-14 1446 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2064 ax-sep 3898 ax-pow 3950 ax-pr 3966 |
This theorem depends on definitions: df-bi 115 df-3an 922 df-tru 1288 df-nf 1391 df-sb 1687 df-eu 1945 df-mo 1946 df-clab 2069 df-cleq 2075 df-clel 2078 df-nfc 2209 df-ral 2354 df-rex 2355 df-v 2604 df-un 2978 df-in 2980 df-ss 2987 df-pw 3386 df-sn 3406 df-pr 3407 df-op 3409 df-br 3788 df-opab 3842 df-xp 4371 df-rel 4372 df-cnv 4373 df-dm 4375 df-rn 4376 |
This theorem is referenced by: ssxpbm 4780 ssxp2 4782 xpexr2m 4786 xpima2m 4792 unixpm 4877 |
Copyright terms: Public domain | W3C validator |