Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  rpexp1i GIF version

Theorem rpexp1i 10740
 Description: Relative primality passes to asymmetric powers. (Contributed by Stefan O'Rear, 27-Sep-2014.)
Assertion
Ref Expression
rpexp1i ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → ((𝐴 gcd 𝐵) = 1 → ((𝐴𝑀) gcd 𝐵) = 1))

Proof of Theorem rpexp1i
StepHypRef Expression
1 elnn0 8409 . . 3 (𝑀 ∈ ℕ0 ↔ (𝑀 ∈ ℕ ∨ 𝑀 = 0))
2 rpexp 10739 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑀 ∈ ℕ) → (((𝐴𝑀) gcd 𝐵) = 1 ↔ (𝐴 gcd 𝐵) = 1))
32biimprd 156 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑀 ∈ ℕ) → ((𝐴 gcd 𝐵) = 1 → ((𝐴𝑀) gcd 𝐵) = 1))
433expa 1139 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑀 ∈ ℕ) → ((𝐴 gcd 𝐵) = 1 → ((𝐴𝑀) gcd 𝐵) = 1))
5 simpr 108 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑀 = 0) → 𝑀 = 0)
65oveq2d 5579 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑀 = 0) → (𝐴𝑀) = (𝐴↑0))
7 zcn 8489 . . . . . . . . . 10 (𝐴 ∈ ℤ → 𝐴 ∈ ℂ)
87ad2antrr 472 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑀 = 0) → 𝐴 ∈ ℂ)
98exp0d 9748 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑀 = 0) → (𝐴↑0) = 1)
106, 9eqtrd 2115 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑀 = 0) → (𝐴𝑀) = 1)
1110oveq1d 5578 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑀 = 0) → ((𝐴𝑀) gcd 𝐵) = (1 gcd 𝐵))
12 1gcd 10590 . . . . . . 7 (𝐵 ∈ ℤ → (1 gcd 𝐵) = 1)
1312ad2antlr 473 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑀 = 0) → (1 gcd 𝐵) = 1)
1411, 13eqtrd 2115 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑀 = 0) → ((𝐴𝑀) gcd 𝐵) = 1)
1514a1d 22 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑀 = 0) → ((𝐴 gcd 𝐵) = 1 → ((𝐴𝑀) gcd 𝐵) = 1))
164, 15jaodan 744 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑀 ∈ ℕ ∨ 𝑀 = 0)) → ((𝐴 gcd 𝐵) = 1 → ((𝐴𝑀) gcd 𝐵) = 1))
171, 16sylan2b 281 . 2 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑀 ∈ ℕ0) → ((𝐴 gcd 𝐵) = 1 → ((𝐴𝑀) gcd 𝐵) = 1))
18173impa 1134 1 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → ((𝐴 gcd 𝐵) = 1 → ((𝐴𝑀) gcd 𝐵) = 1))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 102   ∨ wo 662   ∧ w3a 920   = wceq 1285   ∈ wcel 1434  (class class class)co 5563  ℂcc 7093  0cc0 7095  1c1 7096  ℕcn 8158  ℕ0cn0 8407  ℤcz 8484  ↑cexp 9624   gcd cgcd 10545 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-coll 3913  ax-sep 3916  ax-nul 3924  ax-pow 3968  ax-pr 3992  ax-un 4216  ax-setind 4308  ax-iinf 4357  ax-cnex 7181  ax-resscn 7182  ax-1cn 7183  ax-1re 7184  ax-icn 7185  ax-addcl 7186  ax-addrcl 7187  ax-mulcl 7188  ax-mulrcl 7189  ax-addcom 7190  ax-mulcom 7191  ax-addass 7192  ax-mulass 7193  ax-distr 7194  ax-i2m1 7195  ax-0lt1 7196  ax-1rid 7197  ax-0id 7198  ax-rnegex 7199  ax-precex 7200  ax-cnre 7201  ax-pre-ltirr 7202  ax-pre-ltwlin 7203  ax-pre-lttrn 7204  ax-pre-apti 7205  ax-pre-ltadd 7206  ax-pre-mulgt0 7207  ax-pre-mulext 7208  ax-arch 7209  ax-caucvg 7210 This theorem depends on definitions:  df-bi 115  df-dc 777  df-3or 921  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ne 2250  df-nel 2345  df-ral 2358  df-rex 2359  df-reu 2360  df-rmo 2361  df-rab 2362  df-v 2612  df-sbc 2825  df-csb 2918  df-dif 2984  df-un 2986  df-in 2988  df-ss 2995  df-nul 3268  df-if 3369  df-pw 3402  df-sn 3422  df-pr 3423  df-op 3425  df-uni 3622  df-int 3657  df-iun 3700  df-br 3806  df-opab 3860  df-mpt 3861  df-tr 3896  df-id 4076  df-po 4079  df-iso 4080  df-iord 4149  df-on 4151  df-ilim 4152  df-suc 4154  df-iom 4360  df-xp 4397  df-rel 4398  df-cnv 4399  df-co 4400  df-dm 4401  df-rn 4402  df-res 4403  df-ima 4404  df-iota 4917  df-fun 4954  df-fn 4955  df-f 4956  df-f1 4957  df-fo 4958  df-f1o 4959  df-fv 4960  df-riota 5519  df-ov 5566  df-oprab 5567  df-mpt2 5568  df-1st 5818  df-2nd 5819  df-recs 5974  df-frec 6060  df-1o 6085  df-2o 6086  df-er 6193  df-en 6309  df-sup 6491  df-pnf 7269  df-mnf 7270  df-xr 7271  df-ltxr 7272  df-le 7273  df-sub 7400  df-neg 7401  df-reap 7794  df-ap 7801  df-div 7880  df-inn 8159  df-2 8217  df-3 8218  df-4 8219  df-n0 8408  df-z 8485  df-uz 8753  df-q 8838  df-rp 8868  df-fz 9158  df-fzo 9282  df-fl 9404  df-mod 9457  df-iseq 9574  df-iexp 9625  df-cj 9930  df-re 9931  df-im 9932  df-rsqrt 10085  df-abs 10086  df-dvds 10404  df-gcd 10546  df-prm 10697 This theorem is referenced by:  rpexp12i  10741
 Copyright terms: Public domain W3C validator