ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rpgecl GIF version

Theorem rpgecl 8708
Description: A number greater or equal to a positive real is positive real. (Contributed by Mario Carneiro, 28-May-2016.)
Assertion
Ref Expression
rpgecl ((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 𝐴𝐵) → 𝐵 ∈ ℝ+)

Proof of Theorem rpgecl
StepHypRef Expression
1 simp2 916 . 2 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 𝐴𝐵) → 𝐵 ∈ ℝ)
2 0red 7085 . . 3 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 𝐴𝐵) → 0 ∈ ℝ)
3 rpre 8686 . . . 4 (𝐴 ∈ ℝ+𝐴 ∈ ℝ)
433ad2ant1 936 . . 3 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 𝐴𝐵) → 𝐴 ∈ ℝ)
5 rpgt0 8691 . . . 4 (𝐴 ∈ ℝ+ → 0 < 𝐴)
653ad2ant1 936 . . 3 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 𝐴𝐵) → 0 < 𝐴)
7 simp3 917 . . 3 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 𝐴𝐵) → 𝐴𝐵)
82, 4, 1, 6, 7ltletrd 7491 . 2 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 𝐴𝐵) → 0 < 𝐵)
9 elrp 8682 . 2 (𝐵 ∈ ℝ+ ↔ (𝐵 ∈ ℝ ∧ 0 < 𝐵))
101, 8, 9sylanbrc 402 1 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 𝐴𝐵) → 𝐵 ∈ ℝ+)
Colors of variables: wff set class
Syntax hints:  wi 4  w3a 896  wcel 1409   class class class wbr 3791  cr 6945  0cc0 6946   < clt 7118  cle 7119  +crp 8680
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-in1 554  ax-in2 555  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-13 1420  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-sep 3902  ax-pow 3954  ax-pr 3971  ax-un 4197  ax-setind 4289  ax-cnex 7032  ax-resscn 7033  ax-1re 7035  ax-addrcl 7038  ax-rnegex 7050  ax-pre-ltwlin 7054
This theorem depends on definitions:  df-bi 114  df-3an 898  df-tru 1262  df-fal 1265  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ne 2221  df-nel 2315  df-ral 2328  df-rex 2329  df-rab 2332  df-v 2576  df-dif 2947  df-un 2949  df-in 2951  df-ss 2958  df-pw 3388  df-sn 3408  df-pr 3409  df-op 3411  df-uni 3608  df-br 3792  df-opab 3846  df-xp 4378  df-cnv 4380  df-pnf 7120  df-mnf 7121  df-xr 7122  df-ltxr 7123  df-le 7124  df-rp 8681
This theorem is referenced by:  divge1  8746  rpgecld  8759
  Copyright terms: Public domain W3C validator