ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rr19.28v GIF version

Theorem rr19.28v 2705
Description: Restricted quantifier version of Theorem 19.28 of [Margaris] p. 90. (Contributed by NM, 29-Oct-2012.)
Assertion
Ref Expression
rr19.28v (∀𝑥𝐴𝑦𝐴 (𝜑𝜓) ↔ ∀𝑥𝐴 (𝜑 ∧ ∀𝑦𝐴 𝜓))
Distinct variable groups:   𝑦,𝐴   𝑥,𝑦   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥,𝑦)   𝐴(𝑥)

Proof of Theorem rr19.28v
StepHypRef Expression
1 simpl 106 . . . . . 6 ((𝜑𝜓) → 𝜑)
21ralimi 2401 . . . . 5 (∀𝑦𝐴 (𝜑𝜓) → ∀𝑦𝐴 𝜑)
3 biidd 165 . . . . . 6 (𝑦 = 𝑥 → (𝜑𝜑))
43rspcv 2669 . . . . 5 (𝑥𝐴 → (∀𝑦𝐴 𝜑𝜑))
52, 4syl5 32 . . . 4 (𝑥𝐴 → (∀𝑦𝐴 (𝜑𝜓) → 𝜑))
6 simpr 107 . . . . . 6 ((𝜑𝜓) → 𝜓)
76ralimi 2401 . . . . 5 (∀𝑦𝐴 (𝜑𝜓) → ∀𝑦𝐴 𝜓)
87a1i 9 . . . 4 (𝑥𝐴 → (∀𝑦𝐴 (𝜑𝜓) → ∀𝑦𝐴 𝜓))
95, 8jcad 295 . . 3 (𝑥𝐴 → (∀𝑦𝐴 (𝜑𝜓) → (𝜑 ∧ ∀𝑦𝐴 𝜓)))
109ralimia 2399 . 2 (∀𝑥𝐴𝑦𝐴 (𝜑𝜓) → ∀𝑥𝐴 (𝜑 ∧ ∀𝑦𝐴 𝜓))
11 r19.28av 2466 . . 3 ((𝜑 ∧ ∀𝑦𝐴 𝜓) → ∀𝑦𝐴 (𝜑𝜓))
1211ralimi 2401 . 2 (∀𝑥𝐴 (𝜑 ∧ ∀𝑦𝐴 𝜓) → ∀𝑥𝐴𝑦𝐴 (𝜑𝜓))
1310, 12impbii 121 1 (∀𝑥𝐴𝑦𝐴 (𝜑𝜓) ↔ ∀𝑥𝐴 (𝜑 ∧ ∀𝑦𝐴 𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 101  wb 102  wcel 1409  wral 2323
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038
This theorem depends on definitions:  df-bi 114  df-tru 1262  df-nf 1366  df-sb 1662  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ral 2328  df-v 2576
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator