ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rsp2 GIF version

Theorem rsp2 2388
Description: Restricted specialization. (Contributed by NM, 11-Feb-1997.)
Assertion
Ref Expression
rsp2 (∀𝑥𝐴𝑦𝐵 𝜑 → ((𝑥𝐴𝑦𝐵) → 𝜑))

Proof of Theorem rsp2
StepHypRef Expression
1 rsp 2386 . . 3 (∀𝑥𝐴𝑦𝐵 𝜑 → (𝑥𝐴 → ∀𝑦𝐵 𝜑))
2 rsp 2386 . . 3 (∀𝑦𝐵 𝜑 → (𝑦𝐵𝜑))
31, 2syl6 33 . 2 (∀𝑥𝐴𝑦𝐵 𝜑 → (𝑥𝐴 → (𝑦𝐵𝜑)))
43impd 246 1 (∀𝑥𝐴𝑦𝐵 𝜑 → ((𝑥𝐴𝑦𝐵) → 𝜑))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 101  wcel 1409  wral 2323
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-4 1416
This theorem depends on definitions:  df-bi 114  df-ral 2328
This theorem is referenced by:  ralidm  3349  sowlin  4085
  Copyright terms: Public domain W3C validator