![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rspcdva | GIF version |
Description: Restricted specialization, using implicit substitution. (Contributed by Thierry Arnoux, 21-Jun-2020.) |
Ref | Expression |
---|---|
rspcdva.1 | ⊢ (𝑥 = 𝐶 → (𝜓 ↔ 𝜒)) |
rspcdva.2 | ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝜓) |
rspcdva.3 | ⊢ (𝜑 → 𝐶 ∈ 𝐴) |
Ref | Expression |
---|---|
rspcdva | ⊢ (𝜑 → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rspcdva.2 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝜓) | |
2 | rspcdva.3 | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝐴) | |
3 | rspcdva.1 | . . . 4 ⊢ (𝑥 = 𝐶 → (𝜓 ↔ 𝜒)) | |
4 | 3 | adantl 271 | . . 3 ⊢ ((𝜑 ∧ 𝑥 = 𝐶) → (𝜓 ↔ 𝜒)) |
5 | 2, 4 | rspcdv 2705 | . 2 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 → 𝜒)) |
6 | 1, 5 | mpd 13 | 1 ⊢ (𝜑 → 𝜒) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 103 = wceq 1285 ∈ wcel 1434 ∀wral 2349 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2064 |
This theorem depends on definitions: df-bi 115 df-tru 1288 df-nf 1391 df-sb 1687 df-clab 2069 df-cleq 2075 df-clel 2078 df-nfc 2209 df-ral 2354 df-v 2604 |
This theorem is referenced by: tfr1onlemsucfn 5989 tfr1onlemsucaccv 5990 tfr1onlembxssdm 5992 tfr1onlembfn 5993 tfr1onlemres 5998 tfrcllemsucfn 6002 tfrcllemsucaccv 6003 tfrcllembxssdm 6005 tfrcllembfn 6006 tfrcllemres 6011 tfrcl 6013 rdgon 6035 frecabcl 6048 exbtwnzlemstep 9334 frecuzrdgsuc 9496 frecuzrdgg 9498 frecuzrdgsuctlem 9505 uzsinds 9518 iseqvalt 9532 iseq1 9533 iseq1t 9534 iseqfcl 9535 iseqfclt 9536 iseqcl 9537 iseqp1 9538 iseqp1t 9539 iseqoveq 9540 iseqfveq2 9544 iseqfveq 9546 iseqshft2 9548 isermono 9553 iseqsplit 9554 iseqcaopr3 9556 iseqid3s 9562 iseqid 9563 iseqid2 9564 iseqhomo 9565 iseqz 9566 isumrblem 10337 fisumcvg 10338 bezoutlemex 10534 bezoutlemzz 10535 bezoutlemmo 10539 bezoutlemle 10541 bezoutlemsup 10542 |
Copyright terms: Public domain | W3C validator |