ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rspcedvd GIF version

Theorem rspcedvd 2680
Description: Restricted existential specialization, using implicit substitution. Variant of rspcedv 2677. (Contributed by AV, 27-Nov-2019.)
Hypotheses
Ref Expression
rspcedvd.1 (𝜑𝐴𝐵)
rspcedvd.2 ((𝜑𝑥 = 𝐴) → (𝜓𝜒))
rspcedvd.3 (𝜑𝜒)
Assertion
Ref Expression
rspcedvd (𝜑 → ∃𝑥𝐵 𝜓)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜑,𝑥   𝜒,𝑥
Allowed substitution hint:   𝜓(𝑥)

Proof of Theorem rspcedvd
StepHypRef Expression
1 rspcedvd.3 . 2 (𝜑𝜒)
2 rspcedvd.1 . . 3 (𝜑𝐴𝐵)
3 rspcedvd.2 . . 3 ((𝜑𝑥 = 𝐴) → (𝜓𝜒))
42, 3rspcedv 2677 . 2 (𝜑 → (𝜒 → ∃𝑥𝐵 𝜓))
51, 4mpd 13 1 (𝜑 → ∃𝑥𝐵 𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 101  wb 102   = wceq 1259  wcel 1409  wrex 2324
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038
This theorem depends on definitions:  df-bi 114  df-tru 1262  df-nf 1366  df-sb 1662  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-rex 2329  df-v 2576
This theorem is referenced by:  rspcedeq1vd  2681  rspcedeq2vd  2682  modqmuladd  9316  modqmuladdnn0  9318  modfzo0difsn  9345  divconjdvds  10161  2tp1odd  10196  pw2dvdslemn  10253
  Copyright terms: Public domain W3C validator