ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sb3an GIF version

Theorem sb3an 1848
Description: Conjunction inside and outside of a substitution are equivalent. (Contributed by NM, 14-Dec-2006.)
Assertion
Ref Expression
sb3an ([𝑦 / 𝑥](𝜑𝜓𝜒) ↔ ([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝜓 ∧ [𝑦 / 𝑥]𝜒))

Proof of Theorem sb3an
StepHypRef Expression
1 df-3an 898 . . 3 ((𝜑𝜓𝜒) ↔ ((𝜑𝜓) ∧ 𝜒))
21sbbii 1664 . 2 ([𝑦 / 𝑥](𝜑𝜓𝜒) ↔ [𝑦 / 𝑥]((𝜑𝜓) ∧ 𝜒))
3 sban 1845 . 2 ([𝑦 / 𝑥]((𝜑𝜓) ∧ 𝜒) ↔ ([𝑦 / 𝑥](𝜑𝜓) ∧ [𝑦 / 𝑥]𝜒))
4 sban 1845 . . . 4 ([𝑦 / 𝑥](𝜑𝜓) ↔ ([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝜓))
54anbi1i 439 . . 3 (([𝑦 / 𝑥](𝜑𝜓) ∧ [𝑦 / 𝑥]𝜒) ↔ (([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝜓) ∧ [𝑦 / 𝑥]𝜒))
6 df-3an 898 . . 3 (([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝜓 ∧ [𝑦 / 𝑥]𝜒) ↔ (([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝜓) ∧ [𝑦 / 𝑥]𝜒))
75, 6bitr4i 180 . 2 (([𝑦 / 𝑥](𝜑𝜓) ∧ [𝑦 / 𝑥]𝜒) ↔ ([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝜓 ∧ [𝑦 / 𝑥]𝜒))
82, 3, 73bitri 199 1 ([𝑦 / 𝑥](𝜑𝜓𝜒) ↔ ([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝜓 ∧ [𝑦 / 𝑥]𝜒))
Colors of variables: wff set class
Syntax hints:  wa 101  wb 102  w3a 896  [wsb 1661
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-4 1416  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444
This theorem depends on definitions:  df-bi 114  df-3an 898  df-nf 1366  df-sb 1662
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator