ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sb4e GIF version

Theorem sb4e 1728
Description: One direction of a simplified definition of substitution that unlike sb4 1755 doesn't require a distinctor antecedent. (Contributed by NM, 2-Feb-2007.)
Assertion
Ref Expression
sb4e ([𝑦 / 𝑥]𝜑 → ∀𝑥(𝑥 = 𝑦 → ∃𝑦𝜑))

Proof of Theorem sb4e
StepHypRef Expression
1 sb1 1691 . 2 ([𝑦 / 𝑥]𝜑 → ∃𝑥(𝑥 = 𝑦𝜑))
2 equs5e 1718 . 2 (∃𝑥(𝑥 = 𝑦𝜑) → ∀𝑥(𝑥 = 𝑦 → ∃𝑦𝜑))
31, 2syl 14 1 ([𝑦 / 𝑥]𝜑 → ∀𝑥(𝑥 = 𝑦 → ∃𝑦𝜑))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wal 1283  wex 1422  [wsb 1687
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-5 1377  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-11 1438  ax-4 1441  ax-ial 1468
This theorem depends on definitions:  df-bi 115  df-sb 1688
This theorem is referenced by:  hbsb2e  1730
  Copyright terms: Public domain W3C validator