![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sb6f | GIF version |
Description: Equivalence for substitution when 𝑦 is not free in 𝜑. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 30-Apr-2008.) |
Ref | Expression |
---|---|
equs45f.1 | ⊢ (𝜑 → ∀𝑦𝜑) |
Ref | Expression |
---|---|
sb6f | ⊢ ([𝑦 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑦 → 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | equs45f.1 | . . . 4 ⊢ (𝜑 → ∀𝑦𝜑) | |
2 | 1 | sbimi 1688 | . . 3 ⊢ ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]∀𝑦𝜑) |
3 | sb4a 1723 | . . 3 ⊢ ([𝑦 / 𝑥]∀𝑦𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑)) | |
4 | 2, 3 | syl 14 | . 2 ⊢ ([𝑦 / 𝑥]𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑)) |
5 | sb2 1691 | . 2 ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) → [𝑦 / 𝑥]𝜑) | |
6 | 4, 5 | impbii 124 | 1 ⊢ ([𝑦 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑦 → 𝜑)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 103 ∀wal 1283 [wsb 1686 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1377 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-11 1438 ax-4 1441 ax-i9 1464 ax-ial 1468 |
This theorem depends on definitions: df-bi 115 df-sb 1687 |
This theorem is referenced by: sb5f 1726 sbcof2 1732 |
Copyright terms: Public domain | W3C validator |