ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sb8eu GIF version

Theorem sb8eu 1929
Description: Variable substitution in uniqueness quantifier. (Contributed by NM, 7-Aug-1994.) (Revised by Mario Carneiro, 7-Oct-2016.)
Hypothesis
Ref Expression
sb8eu.1 𝑦𝜑
Assertion
Ref Expression
sb8eu (∃!𝑥𝜑 ↔ ∃!𝑦[𝑦 / 𝑥]𝜑)

Proof of Theorem sb8eu
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1437 . . . . 5 𝑤(𝜑𝑥 = 𝑧)
21sb8 1752 . . . 4 (∀𝑥(𝜑𝑥 = 𝑧) ↔ ∀𝑤[𝑤 / 𝑥](𝜑𝑥 = 𝑧))
3 sbbi 1849 . . . . . 6 ([𝑤 / 𝑥](𝜑𝑥 = 𝑧) ↔ ([𝑤 / 𝑥]𝜑 ↔ [𝑤 / 𝑥]𝑥 = 𝑧))
4 sb8eu.1 . . . . . . . 8 𝑦𝜑
54nfsb 1838 . . . . . . 7 𝑦[𝑤 / 𝑥]𝜑
6 equsb3 1841 . . . . . . . 8 ([𝑤 / 𝑥]𝑥 = 𝑧𝑤 = 𝑧)
7 nfv 1437 . . . . . . . 8 𝑦 𝑤 = 𝑧
86, 7nfxfr 1379 . . . . . . 7 𝑦[𝑤 / 𝑥]𝑥 = 𝑧
95, 8nfbi 1497 . . . . . 6 𝑦([𝑤 / 𝑥]𝜑 ↔ [𝑤 / 𝑥]𝑥 = 𝑧)
103, 9nfxfr 1379 . . . . 5 𝑦[𝑤 / 𝑥](𝜑𝑥 = 𝑧)
11 nfv 1437 . . . . 5 𝑤[𝑦 / 𝑥](𝜑𝑥 = 𝑧)
12 sbequ 1737 . . . . 5 (𝑤 = 𝑦 → ([𝑤 / 𝑥](𝜑𝑥 = 𝑧) ↔ [𝑦 / 𝑥](𝜑𝑥 = 𝑧)))
1310, 11, 12cbval 1653 . . . 4 (∀𝑤[𝑤 / 𝑥](𝜑𝑥 = 𝑧) ↔ ∀𝑦[𝑦 / 𝑥](𝜑𝑥 = 𝑧))
14 equsb3 1841 . . . . . 6 ([𝑦 / 𝑥]𝑥 = 𝑧𝑦 = 𝑧)
1514sblbis 1850 . . . . 5 ([𝑦 / 𝑥](𝜑𝑥 = 𝑧) ↔ ([𝑦 / 𝑥]𝜑𝑦 = 𝑧))
1615albii 1375 . . . 4 (∀𝑦[𝑦 / 𝑥](𝜑𝑥 = 𝑧) ↔ ∀𝑦([𝑦 / 𝑥]𝜑𝑦 = 𝑧))
172, 13, 163bitri 199 . . 3 (∀𝑥(𝜑𝑥 = 𝑧) ↔ ∀𝑦([𝑦 / 𝑥]𝜑𝑦 = 𝑧))
1817exbii 1512 . 2 (∃𝑧𝑥(𝜑𝑥 = 𝑧) ↔ ∃𝑧𝑦([𝑦 / 𝑥]𝜑𝑦 = 𝑧))
19 df-eu 1919 . 2 (∃!𝑥𝜑 ↔ ∃𝑧𝑥(𝜑𝑥 = 𝑧))
20 df-eu 1919 . 2 (∃!𝑦[𝑦 / 𝑥]𝜑 ↔ ∃𝑧𝑦([𝑦 / 𝑥]𝜑𝑦 = 𝑧))
2118, 19, 203bitr4i 205 1 (∃!𝑥𝜑 ↔ ∃!𝑦[𝑦 / 𝑥]𝜑)
Colors of variables: wff set class
Syntax hints:  wb 102  wal 1257  wnf 1365  wex 1397  [wsb 1661  ∃!weu 1916
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444
This theorem depends on definitions:  df-bi 114  df-tru 1262  df-nf 1366  df-sb 1662  df-eu 1919
This theorem is referenced by:  sb8mo  1930  nfeud  1932  nfeu  1935  cbveu  1940  cbvreu  2548  acexmid  5538
  Copyright terms: Public domain W3C validator