ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sb8euh GIF version

Theorem sb8euh 2020
Description: Variable substitution in unique existential quantifier. (Contributed by NM, 7-Aug-1994.) (Revised by Andrew Salmon, 9-Jul-2011.)
Hypothesis
Ref Expression
sb8euh.1 (𝜑 → ∀𝑦𝜑)
Assertion
Ref Expression
sb8euh (∃!𝑥𝜑 ↔ ∃!𝑦[𝑦 / 𝑥]𝜑)

Proof of Theorem sb8euh
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ax-17 1506 . . . . 5 ((𝜑𝑥 = 𝑧) → ∀𝑤(𝜑𝑥 = 𝑧))
21sb8h 1826 . . . 4 (∀𝑥(𝜑𝑥 = 𝑧) ↔ ∀𝑤[𝑤 / 𝑥](𝜑𝑥 = 𝑧))
3 sbbi 1930 . . . . . 6 ([𝑤 / 𝑥](𝜑𝑥 = 𝑧) ↔ ([𝑤 / 𝑥]𝜑 ↔ [𝑤 / 𝑥]𝑥 = 𝑧))
4 sb8euh.1 . . . . . . . 8 (𝜑 → ∀𝑦𝜑)
54hbsb 1920 . . . . . . 7 ([𝑤 / 𝑥]𝜑 → ∀𝑦[𝑤 / 𝑥]𝜑)
6 equsb3 1922 . . . . . . . 8 ([𝑤 / 𝑥]𝑥 = 𝑧𝑤 = 𝑧)
7 ax-17 1506 . . . . . . . 8 (𝑤 = 𝑧 → ∀𝑦 𝑤 = 𝑧)
86, 7hbxfrbi 1448 . . . . . . 7 ([𝑤 / 𝑥]𝑥 = 𝑧 → ∀𝑦[𝑤 / 𝑥]𝑥 = 𝑧)
95, 8hbbi 1527 . . . . . 6 (([𝑤 / 𝑥]𝜑 ↔ [𝑤 / 𝑥]𝑥 = 𝑧) → ∀𝑦([𝑤 / 𝑥]𝜑 ↔ [𝑤 / 𝑥]𝑥 = 𝑧))
103, 9hbxfrbi 1448 . . . . 5 ([𝑤 / 𝑥](𝜑𝑥 = 𝑧) → ∀𝑦[𝑤 / 𝑥](𝜑𝑥 = 𝑧))
11 ax-17 1506 . . . . 5 ([𝑦 / 𝑥](𝜑𝑥 = 𝑧) → ∀𝑤[𝑦 / 𝑥](𝜑𝑥 = 𝑧))
12 sbequ 1812 . . . . 5 (𝑤 = 𝑦 → ([𝑤 / 𝑥](𝜑𝑥 = 𝑧) ↔ [𝑦 / 𝑥](𝜑𝑥 = 𝑧)))
1310, 11, 12cbvalh 1726 . . . 4 (∀𝑤[𝑤 / 𝑥](𝜑𝑥 = 𝑧) ↔ ∀𝑦[𝑦 / 𝑥](𝜑𝑥 = 𝑧))
14 equsb3 1922 . . . . . 6 ([𝑦 / 𝑥]𝑥 = 𝑧𝑦 = 𝑧)
1514sblbis 1931 . . . . 5 ([𝑦 / 𝑥](𝜑𝑥 = 𝑧) ↔ ([𝑦 / 𝑥]𝜑𝑦 = 𝑧))
1615albii 1446 . . . 4 (∀𝑦[𝑦 / 𝑥](𝜑𝑥 = 𝑧) ↔ ∀𝑦([𝑦 / 𝑥]𝜑𝑦 = 𝑧))
172, 13, 163bitri 205 . . 3 (∀𝑥(𝜑𝑥 = 𝑧) ↔ ∀𝑦([𝑦 / 𝑥]𝜑𝑦 = 𝑧))
1817exbii 1584 . 2 (∃𝑧𝑥(𝜑𝑥 = 𝑧) ↔ ∃𝑧𝑦([𝑦 / 𝑥]𝜑𝑦 = 𝑧))
19 df-eu 2000 . 2 (∃!𝑥𝜑 ↔ ∃𝑧𝑥(𝜑𝑥 = 𝑧))
20 df-eu 2000 . 2 (∃!𝑦[𝑦 / 𝑥]𝜑 ↔ ∃𝑧𝑦([𝑦 / 𝑥]𝜑𝑦 = 𝑧))
2118, 19, 203bitr4i 211 1 (∃!𝑥𝜑 ↔ ∃!𝑦[𝑦 / 𝑥]𝜑)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104  wal 1329  wex 1468  [wsb 1735  ∃!weu 1997
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515
This theorem depends on definitions:  df-bi 116  df-nf 1437  df-sb 1736  df-eu 2000
This theorem is referenced by:  eu1  2022
  Copyright terms: Public domain W3C validator