Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  sb8mo GIF version

Theorem sb8mo 1957
 Description: Variable substitution for "at most one." (Contributed by Alexander van der Vekens, 17-Jun-2017.)
Hypothesis
Ref Expression
sb8eu.1 𝑦𝜑
Assertion
Ref Expression
sb8mo (∃*𝑥𝜑 ↔ ∃*𝑦[𝑦 / 𝑥]𝜑)

Proof of Theorem sb8mo
StepHypRef Expression
1 sb8eu.1 . . . 4 𝑦𝜑
21sb8e 1780 . . 3 (∃𝑥𝜑 ↔ ∃𝑦[𝑦 / 𝑥]𝜑)
31sb8eu 1956 . . 3 (∃!𝑥𝜑 ↔ ∃!𝑦[𝑦 / 𝑥]𝜑)
42, 3imbi12i 237 . 2 ((∃𝑥𝜑 → ∃!𝑥𝜑) ↔ (∃𝑦[𝑦 / 𝑥]𝜑 → ∃!𝑦[𝑦 / 𝑥]𝜑))
5 df-mo 1947 . 2 (∃*𝑥𝜑 ↔ (∃𝑥𝜑 → ∃!𝑥𝜑))
6 df-mo 1947 . 2 (∃*𝑦[𝑦 / 𝑥]𝜑 ↔ (∃𝑦[𝑦 / 𝑥]𝜑 → ∃!𝑦[𝑦 / 𝑥]𝜑))
74, 5, 63bitr4i 210 1 (∃*𝑥𝜑 ↔ ∃*𝑦[𝑦 / 𝑥]𝜑)
 Colors of variables: wff set class Syntax hints:   → wi 4   ↔ wb 103  Ⅎwnf 1390  ∃wex 1422  [wsb 1687  ∃!weu 1943  ∃*wmo 1944 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469 This theorem depends on definitions:  df-bi 115  df-tru 1288  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator